2 resultados para Thermo-oxidative degradation

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Ultraviolet-ozone treatment is used as a standard surface cleaning procedure for removal of molecular organic contamination from analytical and sensing devices. Here, it is applied for injection-molded polymer microcantilevers before characterization and sensing experiments. This article examines the effects of the surface cleaning process using commercial equipment, in particular on the performance and mechanical properties of the cantilevers. It can be shown that the first chemical aging process essentially consist of the cross linking of the polymer chains together with a physical aging of the material. For longer exposure, the expected thermo-oxidative formation of carbonyl groups sets in and an exposure dependent chemical degradation can be detected. A process time of 20 min was found suitable as a trade-off between cleaning and stability

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Desferrioxamine inhibits cortical necrosis in neonatal rats with experimental pneumococcal meningitis, suggesting that iron-induced oxidative damage might be responsible for neuronal damage. We therefore examined the spatial and temporal profile of changes in cortical iron and iron homeostatic proteins during pneumococcal meningitis. Infection was associated with a steady and global increase of non-haem iron in the cortex, particularly in neuronal cell bodies of layer II and V, and in capillary endothelial cells. The non-haem iron increase was associated with induction of haem oxygenase (HO)-1 in neurones, microglia and capillary endothelial cells, whereas HO-2 levels remained unchanged, suggesting that the non-haem iron increase might be the result of HO-1-mediated haem degradation. Indeed, treatment with the haem oxygenase inhibitor tin protoporphyrin (which completely blocked the accumulation of bilirubin detected in HO-1-positive cells) completely prevented the infection-associated non-haem iron increase. The same cells also displayed markedly increased ferritin staining, the increase of which occurred independently of HO activity. At the same time, no increase in DNA/RNA oxidation was observed in infected animals (as assessed by in situ detection of 8-hydroxy[deoxy]guanosine), strongly suggesting that ferritin up-regulation protected the brain from iron-induced oxidative damage. Thus, although pneumococcal meningitis leads to an increase of cortical non-haem iron, protective mechanisms up-regulated in parallel prevent iron-induced oxidative damage. Cortical damage does not appear to be a direct consequence of increased iron, therefore.