10 resultados para Thermal structure in the sea
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Local heating increases skin blood flow SkBF (thermal hyperemia). In a previous study, we reported that a first local thermal stimulus could attenuate the hyperemic response to a second one applied later on the same skin spot, a phenomenon that we termed desensitization. However, other studies found no evidence for desensitization in similar conditions. The aim of the present work was to test whether it was related to differences in instrumentation.
Resumo:
The discussions on the orogenic evolution during Earth's history converge to the question of a different thermal structure in the Archean compared to the Phanerozoic and the applicability of the plate tectonic paradigm. However, geothermal structures are transient in orogens and are difficult to translate into large-scale tectonics and exhumation rates. Therefore, we propose depth–time data in the Archean Skjoldungen Orogen (SE Greenland, North Atlantic Craton) that allow for reconstruction of an exhumation rate independent of geothermal gradients. The resulting exhumation rate of ca. 0.4 km/Ma is similar to exhumation rates during erosion-controlled processes in modern orogens. These exhumation rates can only be established by erosion time constants similar to modern orogens. The occurrence of erosion-controlled exhumation is best explained by a stiff foreland promoting localized deformation in the orogen. Therefore, a switch from magmatic-dominated processes to localized deformation is proposed in the Skjoldungen Orogen area. This is supported by a change in magma composition and volume, from widespread granodiorite to localized alkaline intrusions. In addition, the involved metasedimentary rocks include detrital zircons of the only 50 Ma older foreland, which also correspond to erosion and tectonics as in modern orogens, i.e. flysh-type sediments. Relatively fast exhumation rates and the structural-magmatic evolution of the Neoarchean Skjoldungen Orogen thus indicate modern-style tectonic processes where stiff Mesoarchean continental crust forms a foreland to a collisional orogen instead of typical accretionary tectonics of weak island arc-like terranes in granite-greenstone terranes.
Resumo:
BACKGROUND: FGFRL1, the gene for the fifth member of the fibroblast growth factor receptor (FGFR) family, is found in all vertebrates from fish to man and in the cephalochordate amphioxus. Since it does not occur in more distantly related invertebrates such as insects and nematodes, we have speculated that FGFRL1 might have evolved just before branching of the vertebrate lineage from the other invertebrates (Beyeler and Trueb, 2006). RESULTS: We identified the gene for FGFRL1 also in the sea urchin Strongylocentrotus purpuratus and cloned its mRNA. The deduced amino acid sequence shares 62% sequence similarity with the human protein and shows conservation of all disulfides and N-linked carbohydrate attachment sites. Similar to the human protein, the S. purpuratus protein contains a histidine-rich motif at the C-terminus, but this motif is much shorter than the human counterpart. To analyze the function of the novel motif, recombinant fusion proteins were prepared in a bacterial expression system. The human fusion protein bound to nickel and zinc affinity columns, whereas the sea urchin protein barely interacted with such columns. Direct determination of metal ions by atomic absorption revealed 2.6 mole zinc/mole protein for human FGFRL1 and 1.7 mole zinc/mole protein for sea urchin FGFRL1. CONCLUSION: The FGFRL1 gene has evolved much earlier than previously assumed. A comparison of the intracellular domain between sea urchin and human FGFRL1 provides interesting insights into the shaping of a novel zinc binding domain.
Resumo:
We examined genetic diversity and population structure in the American landmass using 678 autosomal microsatellite markers genotyped in 422 individuals representing 24 Native American populations sampled from North, Central, and South America. These data were analyzed jointly with similar data available in 54 other indigenous populations worldwide, including an additional five Native American groups. The Native American populations have lower genetic diversity and greater differentiation than populations from other continental regions. We observe gradients both of decreasing genetic diversity as a function of geographic distance from the Bering Strait and of decreasing genetic similarity to Siberians-signals of the southward dispersal of human populations from the northwestern tip of the Americas. We also observe evidence of: (1) a higher level of diversity and lower level of population structure in western South America compared to eastern South America, (2) a relative lack of differentiation between Mesoamerican and Andean populations, (3) a scenario in which coastal routes were easier for migrating peoples to traverse in comparison with inland routes, and (4) a partial agreement on a local scale between genetic similarity and the linguistic classification of populations. These findings offer new insights into the process of population dispersal and differentiation during the peopling of the Americas.
Resumo:
We study the phase diagram of the two-dimensional N = 1 Wess-Zumino model using Wilson fermions and the fermion loop formulation. We give a complete non-perturbative determination of the ground state structure in the continuum and infinite volume limit. We also present a determination of the particle spectrum in the supersymmetric phase, in the supersymmetry broken phase and across the supersymmetry breaking phase transition. In the supersymmetry broken phase we observe the emergence of the Goldstino particle.
Resumo:
Ancient Kinneret (Tēl Kinrōt [Hebrew]; Tell el-ʿOrēme [Arabic]) is located on a steep limestone hill on the northwestern shores of the Sea of Galilee (2508.7529 [NIG]). The site, whose settlement history began sometime during the Pottery-Neolithic or the early Chalcolithic period, is emerging as one of the major sites for the study of urban life in the Southern Levant during the Early Iron Age (c. 1130–950 BCE). Its size, accessibility by major trade routes, and strategic location between different spheres of cultural and political influence make Tēl Kinrōt an ideal place for studying the interaction of various cultures on urban sites, as well as to approach questions of ethnicity and regionalism during one of the most debated periods in the history of the ancient Levant. The paper will briefly discuss the settlement history of the site during the Early Iron Age. However, the main focus will lie on the material culture of the late Iron Age IB city that rapidly evolved to a regional center during the transition from the 11th to the 10th century BCE. During this period, ancient Kinneret features a multitude of cultural influences that reach from Egypt via the Central Hill Country until the Northern parts of Syria and the Amuq region. While there are indisputably close ties with the ‘Aramaean’ realm, there are also strong indications that there were – at the same time – vivid socio-economic links with the West, i.e. the Southern and Northern Mediterranean coasts and their hinterland. It will be argued that the resulting ‘cultural blend’ is a typical characteristic of the material culture of the Northern Jordan Rift Valley in the advent of the emerging regional powers of the Iron Age II.
Resumo:
We study the phase diagram of the two-dimensional N=1 Wess-Zumino model on the lattice using Wilson fermions and the fermion loop formulation. We give a complete nonperturbative determination of the ground state structure in the continuum and infinite volume limit. We also present a determination of the particle spectrum in the supersymmetric phase, in the supersymmetry broken phase and across the supersymmetry breaking phase transition. In the supersymmetry broken phase, we observe the emergence of the Goldstino particle.
Resumo:
The fractionation of major sea-water ions, or deviation in their relative concentrations from Standard Mean Ocean Water ratios, has been frequently observed in sea ice. It is generally thought to be associated with precipitation of solid salts at certain eutectic temperatures. The variability found in bulk sea-ice samples indicates that the fractionation of ions depends on the often unknown thermal history of sea ice, which affects the structure of pore networks and fate of solid salts within them. Here we investigate the distribution of ions in Arctic sea ice that is a few weeks old with a reconstructible thermal history. We separate the centrifugable (interconnected) and entrapped (likely disconnected) contributions to the ice salinity and determine their ion fractionation signatures. The results indicate that differential diffusion of ions, rather than eutectic precipitation of cryohydrates, has led to significant ion fractionation. The finding emphasizes the role of coupled diffusive–convective salt transport through complex pore networks in shaping the biogeochemistry of sea ice.
Resumo:
We present the synthesis of the two novel nucleosides iso-tc-T and bcen-T, belonging to the bicyclo-/tricyclo-DNA molecular platform. In both modifications the torsion around C6’–C7’ within the carbocyclic ring is planarized by either the presence of a C6’–C7’ double bond or a cyclopropane ring. Structural analysis of these two nucleosides by X-ray analysis reveals a clear preference of torsion angle γ for the gauche orientation with the furanose ring in a near perfect 2’-endo conformation. Both modifications were incorporated into oligodeoxynucleotides and their thermal melting behavior with DNA and RNA as complements was assessed. We found that the iso-tc-T modification was significantly more destabilizing in duplex formation compared to the bcen-T modification. In addition, duplexes with complementary RNA were less stable as compared to duplexes with DNA as complement. A structure/affinity analysis, including the already known bc-T and tc-T modifications, does not lead to a clear correlation of the orientation of torsion angle γ with DNA or RNA affinity. There is, however, some correlation between furanose conformation (N- or S-type) and affinity in the sense that a preference for a 3’-endo like conformation is associated with a preference for RNA as complement. As a general rule it appears that Tm data of single modifications with nucleosides of the bicyclo-/tricyclo-DNA platform within deoxyoligonucleotides are not predictive for the stability of fully modified oligonucleotides.