75 resultados para Therapeutics, Physiological.
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
To determine the potential benefit of combined respiratory-cardiac triggering for diffusion-weighted imaging (DWI) of kidneys compared to respiratory triggering alone (RT).
Resumo:
Introduction The survival of patients admitted to an emergency department is determined by the severity of acute illness and the quality of care provided. The high number and the wide spectrum of severity of illness of admitted patients make an immediate assessment of all patients unrealistic. The aim of this study is to evaluate a scoring system based on readily available physiological parameters immediately after admission to an emergency department (ED) for the purpose of identification of at-risk patients. Methods This prospective observational cohort study includes 4,388 consecutive adult patients admitted via the ED of a 960-bed tertiary referral hospital over a period of six months. Occurrence of each of seven potential vital sign abnormalities (threat to airway, abnormal respiratory rate, oxygen saturation, systolic blood pressure, heart rate, low Glasgow Coma Scale and seizures) was collected and added up to generate the vital sign score (VSS). VSSinitial was defined as the VSS in the first 15 minutes after admission, VSSmax as the maximum VSS throughout the stay in ED. Occurrence of single vital sign abnormalities in the first 15 minutes and VSSinitial and VSSmax were evaluated as potential predictors of hospital mortality. Results Logistic regression analysis identified all evaluated single vital sign abnormalities except seizures and abnormal respiratory rate to be independent predictors of hospital mortality. Increasing VSSinitial and VSSmax were significantly correlated to hospital mortality (odds ratio (OR) 2.80, 95% confidence interval (CI) 2.50 to 3.14, P < 0.0001 for VSSinitial; OR 2.36, 95% CI 2.15 to 2.60, P < 0.0001 for VSSmax). The predictive power of VSS was highest if collected in the first 15 minutes after ED admission (log rank Chi-square 468.1, P < 0.0001 for VSSinitial;,log rank Chi square 361.5, P < 0.0001 for VSSmax). Conclusions Vital sign abnormalities and VSS collected in the first minutes after ED admission can identify patients at risk of an unfavourable outcome.
Resumo:
Modern anticancer therapeutics can be associated with significant cardiovascular side-effects. Detection, risk assessment, and treatment of these unwanted effects are an important task for treating physicians. The purpose of this review is to focus on approved novel cancer therapeutics and discuss the most important cardiovascular side-effects, prognosis, and potential treatment. We will contrast these effects to those of conventional cardiotoxic chemotherapeutics.
Resumo:
In 2000, fishermen reported the appearance of deformed reproductive organs in whitefish (Coregonus spp.) from Lake Thun, Switzerland. Despite intensive investigations, the causes of these abnormalities remain unknown. Using gene expression profiling, we sought to identify candidate genes and physiological processes possibly associated with the observed gonadal deformations, in order to gain insights into potential causes. Using in situ-synthesized oligonucleotide arrays, we compared the expression levels at 21,492 unique transcript probes in liver and head kidney tissue of male whitefish with deformed and normally developed gonads, respectively. The fish had been collected on spawning sites of two genetically distinct whitefish forms of Lake Thun. We contrasted the gene expression profiles of 56 individuals, i.e., 14 individuals of each phenotype and of each population. Gene-by-gene analysis revealed weak expression differences between normal and deformed fish, and only one gene, ictacalcin, was found to be up-regulated in head kidney tissue of deformed fish from both whitefish forms, However, this difference could not be confirmed with quantitative real-time qPCR. Enrichment analysis on the level of physiological processes revealed (i) the involvement of immune response genes in both tissues, particularly those linked to complement activation in the liver, (ii) proteolysis in the liver and (iii) GTPase activity and Ras protein signal transduction in the head kidney. In comparison with current literature, this gene expression pattern signals a chronic autoimmune disease in the testes. Based on the recent observations that gonad deformations are induced through feeding of zooplankton from Lake Thun we hypothesize that a xenobiotic accumulated in whitefish via the plankton triggering autoimmunity as the likely cause of gonad deformations. We propose several experimental strategies to verify or reject this hypothesis.
Resumo:
Migrating lymphocytes acquire a polarized phenotype with a leading and a trailing edge, or uropod. Although in vitro experiments in cell lines or activated primary cell cultures have established that Rho-p160 coiled-coil kinase (ROCK)-myosin II-mediated uropod contractility is required for integrin de-adhesion on two-dimensional surfaces and nuclear propulsion through narrow pores in three-dimensional matrices, less is known about the role of these two events during the recirculation of primary, nonactivated lymphocytes. Using pharmacological antagonists of ROCK and myosin II, we report that inhibition of uropod contractility blocked integrin-independent mouse T cell migration through narrow, but not large, pores in vitro. T cell crawling on chemokine-coated endothelial cells under shear was severely impaired by ROCK inhibition, whereas transendothelial migration was only reduced through endothelial cells with high, but not low, barrier properties. Using three-dimensional thick-tissue imaging and dynamic two-photon microscopy of T cell motility in lymphoid tissue, we demonstrated a significant role for uropod contractility in intraluminal crawling and transendothelial migration through lymph node, but not bone marrow, endothelial cells. Finally, we demonstrated that ICAM-1, but not anatomical constraints or integrin-independent interactions, reduced parenchymal motility of inhibitor-treated T cells within the dense lymphoid microenvironment, thus assigning context-dependent roles for uropod contraction during lymphocyte recirculation.
Resumo:
Quassinoids are a group of compounds extracted from plants of the Simaroubaceae family, which have been used for many years in folk medicine. These molecules gained notoriety after the initial discovery of the anti-leukemic activity of one member, bruceantin, in 1975. Currently over 150 quassinoids have been isolated and classified based on their chemical structures and biological properties investigated in vitro and in vivo. Many molecules display a wide range of inhibitory effects, including anti-inflammatory, anti-viral, anti-malarial and anti-proliferative effects on various tumor cell types. Although often the exact mechanism of action of the single agents remains unclear, some agents have been shown to affect protein synthesis in general, or specifically HIF-1α and MYC, membrane polarization and the apoptotic machinery. Considering that future research into chemical modifications is likely to generate more active and less toxic derivatives of natural quassinoids, this family represents a powerful source of promising small molecules targeting key prosurvival signaling pathways relevant for diverse pathologies. Here, we review available knowledge of functionality and possible applications of quassinoids and quassinoid derivatives, spanning traditional use to the potential impact on modern medicine as cancer therapeutics.
Resumo:
The pain and distress associated with transcutaneous electrical nerve stimulation (TENS) of the udder was evaluated by treating 20 healthy dairy cows with an electrical udder stimulator. This generated a sequence of pulses (frequency: 160+/-10% impulses per second, duration 250 mus) and provided voltage ranges from 0 to 10 volts (+/-10%). Trials took place on three consecutive days, twice daily after morning and evening milking. Daily sessions were divided into two periods: (1) control (sham treatment) and (2) treatment (real treatment). Physiological (heart rate, respiratory rate, and plasma cortisol concentration) as well as ethological parameters (kicking, weight shifting, and looking backwards to udder) were defined as pain-indicating parameters and observed. Evaluation of data showed that only one parameter (kicking) was significantly increased during real treatment compared to sham treatment. It is concluded that the TENS therapy tested in this study can evoke changes in behaviour (increased kicking) consistent with an experience of pain in some cows.
Resumo:
Vascular-disrupting agents like combretastatin (CA-4-P), used to attenuate tumor blood flow in vivo, exert anti-mitotic and anti-migratory effects on endothelial cells in vitro. We tested whether anti-vascular or anti-angiogenic effects of CA-4-P are evident with physiological angiogenesis in skeletal muscle (EDL) due to sustained hyperemia (intraluminal splitting) and chronic muscle overload (abluminal sprouting).
Resumo:
Vitamin C (ascorbic acid) is required for the synthesis of collagen, carnitine, catecholamine and the neurotransmitter norepinephrine. Vitamin C also plays an important role in protection against oxidative stress. Transporters for vitamin C and its oxidized form dehydroascorbate (DHA) are crucial to keep vitamin concentrations optimal in the body. The human SLC23 family consists of the Na(+)-dependent vitamin C transporters SVCT1 (SLC23A1) and SVCT2 (SLC23A2) and the orphan transporter SVCT3 (SLC23A3). Phylogenetically, the SLC23 family belongs to the nucleobase-ascorbate transporter family although no specificity for nucleobases has yet been demonstrated for the human members of this family. In fact, the SVCT1 and SVCT2 transporters are rather specific for ascorbic acid. SVCT1 is expressed in epithelial tissues such as intestine, where it contributes to the maintenance of whole-body ascorbic acid levels, whereas the expression of SVCT2 is relatively widespread either to protect metabolically active cells and specialized tissues from oxidative stress or to deliver ascorbic acid to tissues that are in high demand of the vitamin for enzymatic reactions. DHA, the oxidized form of ascorbic acid is taken up and distributed in the body by facilitated transport via members of the SLC2/GLUT family (GLUT1, GLUT3, and GLUT4). Although, the main focus of this review is on the SLC23 family of ascorbic acid transporters, transporters of DHA and nucleobases are also briefly discussed for completeness.
Resumo:
Mouse molars undergo distal movement, during which new bone is formed at the mesial side of the tooth root whereas the preexisting bone is resorbed at the distal side of the root. However, there is little detailed information available regarding which of the bones that surround the tooth root are involved in physiological tooth movement. In the present study, we therefore aimed to investigate the precise morphological differences of the alveolar bone between the bone formation side of the tooth root, using routine histological procedures including silver impregnation, as well as by immunohistochemical analysis of alkaline phosphatase and tartrate-resistant acid phosphatase activity, and immunohistochemical analysis of the expression of the osteocyte markers dentin matrix protein 1, sclerostin, and fibroblast growth factor 23. Histochemical analysis indicated that bone formation by osteoblasts and bone resorption by osteoclasts occurred at the bone formation side and the bone resorption side, respectively. Osteocyte marker immunoreactivity of osteocytes at the surface of the bone close to the periodontal ligament differed at the bone formation and bone resorption sides. We also showed different specific features of osteocytic lacunar canalicular systems at the bone formation and bone resorption sides by using silver staining. This study suggests that the alveolar bone is different in the osteocyte nature between the bone formation side and the bone resorption side due to physiological distal movement of the mouse molar.