14 resultados para Texas. Agricultural and mechanical college.
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Articular cartilage injuries and degeneration affect a large proportion of the population in developed countries world wide. Stem cells can be differentiated into chondrocytes by adding transforming growth factor-beta1 and dexamethasone to a pellet culture, which are unfeasible for tissue engineering purposes. We attempted to achieve stable chondrogenesis without any requirement for exogenous growth factors. Human mesenchymal stem cells were transduced with an adenoviral vector containing the SRY-related HMG-box gene 9 (SOX9), and were cultured in a three-dimensional (3D) hydrogel scaffold composite. As an additional treatment, mechanical stimulation was applied in a custom-made bioreactor. SOX9 increased the expression level of its known target genes, as well as its cofactors: the long form of SOX5 and SOX6. However, it was unable to increase the synthesis of sulfated glycosaminoglycans (GAGs). Mechanical stimulation slightly enhanced collagen type X and increased lubricin expression. The combination of SOX9 and mechanical load boosted GAG synthesis as shown by (35)S incorporation. GAG production rate corresponded well with the amount of (endogenous) transforming growth factor-beta1. Finally, cartilage oligomeric matrix protein expression was increased by both treatments. These findings provide insight into the mechanotransduction of mesenchymal stem cells and demonstrate the potential of a transcription factor in stem cell therapy.
Resumo:
The use of self-expanding retrievable stents is an emerging and promising treatment strategy for acute stroke treatment. The concept combines the advantages of stent deployment with immediate flow-restoration and of mechanical thrombectomy with definitive thrombus removal. The present study was performed to gain more knowledge about the principle of combined flow restoration and thrombectomy in an established animal model using radiopaque thrombi evaluating efficiency, thrombus-device interaction and possible complications of the first dedicated flow-restoration and mechanical thrombectomy device.
Resumo:
During the last decade, a multi-modal approach has been established in human experimental pain research for assessing pain thresholds and responses to various experimental pain modalities. Studies have concluded that differences in responses to pain stimuli are mainly related to variation between individuals rather than variation in response to different stimulus modalities. In a factor analysis of 272 consecutive volunteers (137 men and 135 women) who underwent tests with different experimental pain modalities, it was determined whether responses to different pain modalities represent distinct individual uncorrelated dimensions of pain perception. Volunteers underwent single painful electrical stimulation, repeated painful electrical stimulation (temporal summation), test for reflex receptive field, pressure pain stimulation, heat pain stimulation, cold pain stimulation, and a cold pressor test (ice water test). Five distinct factors were found representing responses to 5 distinct experimental pain modalities: pressure, heat, cold, electrical stimulation, and reflex-receptive fields. Each of the factors explained approximately 8% to 35% of the observed variance, and the 5 factors cumulatively explained 94% of the variance. The correlation between the 5 factors was near null (median ρ=0.00, range -0.03 to 0.05), with 95% confidence intervals for pairwise correlations between 2 factors excluding any relevant correlation. Results were almost similar for analyses stratified according to gender and age. Responses to different experimental pain modalities represent different specific dimensions and should be assessed in combination in future pharmacological and clinical studies to represent the complexity of nociception and pain experience.
Resumo:
OBJECTIVES To investigate the composition and the microstructural and mechanical characterization of three different types of lingual brackets. MATERIALS AND METHODS Incognito™ (3M Unitek), In-Ovation L (DENTSPLY GAC) and STb™ (Light Lingual System, ORMCO) lingual brackets were studied under the scanning electron microscope employing backscattered electron imaging and their elemental composition was analysed by energy-dispersive X-ray microanalysis. Additionally, Vickers hardness was assessed using a universal hardness-testing machine, and the indentation modulus was measured according to instrumented indentation test. Two-way analysis of variance was conducted employing bracket type and location (base and wing) as discriminating variable. Significant differences among groups were allocated by post hoc Student-Newman-Keuls multiple comparison analysis at 95% level of significance. RESULTS Three different phases were identified for Incognito and In-Ovation L bracket based on mean atomic number contrast. On the contrary, STb did not show mean atomic contrast areas and thus it is recognized as a single phase. Incognito is a one-piece bracket with the same structure in wing and base regions. Incognito consists mainly of noble metals while In-Ovation L and STb show similar formulations of ferrous alloys in wing and base regions. No significant differences were found between ferrous brackets in hardness and modulus values, but there were significant differences between wing and base regions. Incognito illustrated intermediate values with significant differences from base and wing values of ferrous brackets. CONCLUSIONS/IMPLICATIONS Significant differences exist in microstructure, elemental composition, and mechanical properties among the brackets tested; these might have a series of clinical implications during mechanotherapy.
Resumo:
BACKGROUND AND PURPOSE Five randomized controlled trials have consistently shown that mechanical thrombectomy (MT) in addition to best medical treatment (±intravenous tissue-type plasminogen activator) improves outcome after acute ischemic stroke in patients with large artery anterior circulation stroke. Whether direct MT is equally effective as combined intravenous thrombolysis with MT (ie, bridging thrombolysis) remains unclear. METHODS We retrospectively compared clinical and radiological outcomes in 167 bridging patients with 255 patients receiving direct MT because of large artery anterior circulation stroke. We matched all patients from the direct MT group who would have qualified for intravenous tissue-type plasminogen activator with controls from the bridging group, using multivariate and propensity score analyses. Functional independence was defined as modified Rankin Scale score of 0 to 2. RESULTS From February 2009 to August 2014, 40 patients from the direct MT group would have qualified for bridging thrombolysis but were treated with MT only. Clinical and radiological characteristics did not differ from the bridging cohort, except for higher rates of hypercholesterolemia (P=0.019), coronary heart disease (P=0.039), and shorter intervals from symptom onset to endovascular intervention (P=0.01) in the direct MT group. Functional independence, mortality, and intracerebral hemorrhage rates did not differ (P>0.1). After multivariate matching analysis outcome in both groups did not differ, except for lower rates of asymptomatic intracerebral hemorrhage (P=0.023) and lower mortality (P=0.007) in the direct MT group. CONCLUSIONS In patients with large anterior circulation stroke, direct mechanical intervention seems to be equally effective as bridging thrombolysis. A randomized trial comparing direct MT with bridging therapy is warranted.
Resumo:
Thermal and mechanical material properties determine comet evolution and even solar system formation because comets are considered remnant volatile-rich planetesimals. Using data from the Multipurpose Sensors for Surface and Sub-Surface Science (MUPUS) instrument package gathered at the Philae landing site Abydos on comet 67P/Churyumov-Gerasimenko, we found the diurnal temperature to vary between 90 and 130 K. The surface emissivity was 0.97, and the local thermal inertia was 85 +/- 35 J m(-2) K(-1)s(-1/2). The MUPUS thermal probe did not fully penetrate the near-surface layers, suggesting a local resistance of the ground to penetration of >4 megapascals, equivalent to >2 megapascal uniaxial compressive strength. A sintered near-surface microporous dust-ice layer with a porosity of 30 to 65% is consistent with the data.
Resumo:
Ultraviolet-ozone treatment is used as a standard surface cleaning procedure for removal of molecular organic contamination from analytical and sensing devices. Here, it is applied for injection-molded polymer microcantilevers before characterization and sensing experiments. This article examines the effects of the surface cleaning process using commercial equipment, in particular on the performance and mechanical properties of the cantilevers. It can be shown that the first chemical aging process essentially consist of the cross linking of the polymer chains together with a physical aging of the material. For longer exposure, the expected thermo-oxidative formation of carbonyl groups sets in and an exposure dependent chemical degradation can be detected. A process time of 20 min was found suitable as a trade-off between cleaning and stability
Resumo:
Morphogenesis occurs in 3D space over time and is guided by coordinated gene expression programs. Here we use postembryonic development in Arabidopsis plants to investigate the genetic control of growth. We demonstrate that gene expression driving the production of the growth-stimulating hormone gibberellic acid and downstream growth factors is first induced within the radicle tip of the embryo. The center of cell expansion is, however, spatially displaced from the center of gene expression. Because the rapidly growing cells have very different geometry from that of those at the tip, we hypothesized that mechanical factors may contribute to this growth displacement. To this end we developed 3D finite-element method models of growing custom-designed digital embryos at cellular resolution. We used this framework to conceptualize how cell size, shape, and topology influence tissue growth and to explore the interplay of geometrical and genetic inputs into growth distribution. Our simulations showed that mechanical constraints are sufficient to explain the disconnect between the experimentally observed spatiotemporal patterns of gene expression and early postembryonic growth. The center of cell expansion is the position where genetic and mechanical facilitators of growth converge. We have thus uncovered a mechanism whereby 3D cellular geometry helps direct where genetically specified growth takes place.
Resumo:
BACKGROUND Low vitamin D is implicated in various chronic pain conditions with, however, inconclusive findings. Vitamin D might play an important role in mechanisms being involved in central processing of evoked pain stimuli but less so for spontaneous clinical pain. OBJECTIVE This study aims to examine the relation between low serum levels of 25-hydroxyvitamin D3 (25-OH D) and mechanical pain sensitivity. DESIGN We studied 174 patients (mean age 48 years, 53% women) with chronic pain. A standardized pain provocation test was applied, and pain intensity was rated on a numerical analogue scale (0-10). The widespread pain index and symptom severity score (including fatigue, waking unrefreshed, and cognitive symptoms) following the 2010 American College of Rheumatology preliminary diagnostic criteria for fibromyalgia were also assessed. Serum 25-OH D levels were measured with a chemiluminescent immunoassay. RESULTS Vitamin deficiency (25-OH D < 50 nmol/L) was present in 71% of chronic pain patients; another 21% had insufficient vitamin D (25-OH D < 75 nmol/L). After adjustment for demographic and clinical variables, there was a mean ± standard error of the mean increase in pain intensity of 0.61 ± 0.25 for each 25 nmol/L decrease in 25-OH D (P = 0.011). Lower 25-OH D levels were also related to greater symptom severity (r = -0.21, P = 0.008) but not to the widespread pain index (P = 0.83) and fibromyalgia (P = 0.51). CONCLUSIONS The findings suggest a role of low vitamin D levels for heightened central sensitivity, particularly augmented pain processing upon mechanical stimulation in chronic pain patients. Vitamin D seems comparably less important for self-reports of spontaneous chronic pain.
Resumo:
Hydrogels have been described as ideal scaffolds for cells of 3D tissue constructs and hold strong promises with respect to in vitro 3D-cell-culture, where cells are isolated from native extracellular matrix (ECM). Synthesized polyethyleneglycol (PEG) hydrogels are appealing with regard to potential for cell therapy or as vehicles for drug delivery or even to regenerate tissue with similar hydrogel-like properties such as the nucleus pulposus of the intervertebral disc (IVD). Here, we tested whether incorporation of RGD motive would hinder discogenic differentiation of primary bone marrow-derived human mesenchymal stem cells (hMSCs) but favor proliferation of undifferentiated hMSCs. HMSCs were embedded in +RGD containing or without RGD PEG hydrogel and pre-conditioned with or without growth and differentiation factor-5 (rhGDF-5) for 13 days. Afterwards, all hMSCs-PEG gels were subsequently cyclically loaded (15% strain, 1Hz) for 5 consecutive days in a bioreactor to generate an IVD-like phenotype. Higher metabolic activity (resazurin assay) was found in groups with rhGDF5 in both gel types with and without RGD. Cell viability and morphology measured by confocal laser microscopy and DNA content showed decreased values (~60%) after 18 days of culture. Real-time RT-PCR of an array of 15 key genes suspected to be distinctive for IVD cells revealed moderate response to rhGDF5 and mechanical loading as also shown by histology staining. Preconditioning and mechanical loading showed relatively moderate responses revealed from both RT-PCR and histology although hMSCs were demonstrated to be potent to differentiate into chondrocyte-progenitor cells in micro- mass and 3D alginate bead culture.