3 resultados para Tetrahydrobiopterin

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

10.00% 10.00%

Publicador:

Resumo:

To gain better insight in the most current diagnosis and treatment practices for phenylketonuria (PKU) from a broad group of experts, a European PKU survey was performed. The questionnaire, consisting of 33 questions, was sent to 243 PKU professionals in 165 PKU centers in 23 European countries. The responses were compiled and descriptive analyses were performed. One hundred and one questionnaires were returned by 93/165 centers (56%) from 19/23 European countries (83%). The majority of respondents (77%) managed patients of all age groups and more than 90% of PKU teams included physicians or dieticians/nutritionists. The greatest variability existed especially in the definition of PKU phenotypes, therapeutic blood phenylalanine (Phe) target concentrations, and follow-up practices for PKU patients. The tetrahydrobiopterin (BH4; sapropterin) loading test was performed by 54% of respondents, of which 61% applied a single dose test (20mg/kg over 24h). BH4 was reported as a treatment option by 34%. This survey documents differences in diagnostic and treatment practices for PKU patients in European centers. In particular, recommendations for the treatment decision varied greatly between different European countries. There is an urgent need to pool long-term data in PKU registries in order to generate an evidence-based international guideline.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVE: Nitric oxide (NO) inhibits thrombus formation, vascular contraction, and smooth muscle cell proliferation. We investigated whether NO release is enhanced after endothelial NO synthase (eNOS) gene transfer in atherosclerotic human carotid artery ex vivo. METHODS AND RESULTS: Western blotting and immunohistochemistry revealed that transduction enhanced eNOS expression; however, neither nitrite production nor NO release measured by porphyrinic microsensor was altered. In contrast, transduction enhanced NO production in non-atherosclerotic rat aorta and human internal mammary artery. In transduced carotid artery, calcium-dependent eNOS activity was minimal and did not differ from control conditions. Vascular tetrahydrobiopterin concentrations did not differ between the experimental groups.Treatment of transduced carotid artery with FAD, FMN, NADPH, L-arginine, and either sepiapterin or tetrahydrobiopterin did not alter NO release. Superoxide formation was similar in transduced carotid artery and control. Treatment of transduced carotid artery with superoxide dismutase (SOD), PEG-SOD, PEG-catalase did not affect NO release. CONCLUSIONS: eNOS transduction in atherosclerotic human carotid artery results in high expression without any measurable activity of the recombinant protein. The defect in the atherosclerotic vessels is neither caused by cofactor deficiency nor enhanced NO breakdown. Since angioplasty is performed in atherosclerotic arteries,eNOS gene therapy is unlikely to provide clinical benefit.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Increased pulmonary artery pressure is a well-known phenomenon of hypoxia and is seen in patients with chronic pulmonary diseases, and also in mountaineers on high altitude expedition. Different mediators are known to regulate pulmonary artery vessel tone. However, exact mechanisms are not fully understood and a multimodal process consisting of a whole panel of mediators is supposed to cause pulmonary artery vasoconstriction. We hypothesized that increased hypoxemia is associated with an increase in vasoconstrictive mediators and decrease of vasodilatators leading to a vasoconstrictive net effect. Furthermore, we suggested oxidative stress being partly involved in changement of these parameters. Oxygen saturation (Sao2) and clinical parameters were assessed in 34 volunteers before and during a Swiss research expedition to Mount Muztagh Ata (7549 m) in Western China. Blood samples were taken at four different sites up to an altitude of 6865 m. A mass spectrometry-based targeted metabolomic platform was used to detect multiple parameters, and revealed functional impairment of enzymes that require oxidation-sensitive cofactors. Specifically, the tetrahydrobiopterin (BH4)-dependent enzyme nitric oxide synthase (NOS) showed significantly lower activities (citrulline-to-arginine ratio decreased from baseline median 0.21 to 0.14 at 6265 m), indicating lower NO availability resulting in less vasodilatative activity. Correspondingly, an increase in systemic oxidative stress was found with a significant increase of the percentage of methionine sulfoxide from a median 6% under normoxic condition to a median level of 30% (p<0.001) in camp 1 at 5533 m. Furthermore, significant increase in vasoconstrictive mediators (e.g., tryptophan, serotonin, and peroxidation-sensitive lipids) were found. During ascent up to 6865 m, significant altitude-dependent changes in multiple vessel-tone modifying mediators with excess in vasoconstrictive metabolites could be demonstrated. These changes, as well as highly significant increase in systemic oxidative stress, may be predictive for increase in acute mountain sickness score and changes in Sao2.