34 resultados para Tethys, paleogeography, paleoenvironments, reefs, carbonate platforms
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Enhanced production of proinflammatory bradykinin-related peptides, the kinins, has been suggested to contribute to the pathogenesis of periodontitis, a common inflammatory disease of human gingival tissues. In this report, we describe a plausible mechanism of activation of the kinin-generating system, also known as the contact system or kininogen-kallikrein-kinin system, by the adsorption of its plasma-derived components such as high-molecular-mass kininogen (HK), prekallikrein (PK), and Hageman factor (FXII) to the cell surface of periodontal pathogen Porphyromonas gingivalis. The adsorption characteristics of mutant strains deficient in selected proteins of the cell envelope suggested that the surface-associated cysteine proteinases, gingipains, bearing hemagglutinin/adhesin domains (RgpA and Kgp) serve as the major platforms for HK and FXII adhesion. These interactions were confirmed by direct binding tests using microplate-immobilized gingipains and biotinylated contact factors. Other bacterial cell surface components such as fimbriae and lipopolysaccharide were also found to contribute to the binding of contact factors, particularly PK. Analysis of kinin release in plasma upon contact with P. gingivalis showed that the bacterial surface-dependent mechanism is complementary to the previously described kinin generation system dependent on HK and PK proteolytic activation by the gingipains. We also found that several P. gingivalis clinical isolates differed in the relative significance of these two mechanisms of kinin production. Taken together, these data show the importance of this specific type of bacterial surface-host homeostatic system interaction in periodontal infections.
Resumo:
Next to the extensive use of social networking platforms (SNPs) for communication and relationship building with friends and relatives, SNPs are also increasingly used for enhancing collaboration at work. SNP usage at the workplace is fundamentally different and it is unclear how SNPs can improve collaboration as well as in what way their designs should be modified and adapted to collaboration settings. This research identifies specific SNP functions that enhance social presence as particularly beneficial for collaboration. Consequently, two designs of SNPs, one with high social presence and one with low social presence, are outlined and its impacts on collaboration are discussed. A framework is constructed that illustrates how social presence in SNPs can improve team performance through enhancing transactive memory within teams (intra-group collaboration) and relational capital across teams (inter-group collaboration). In addition, it is outlined how this framework could be evaluated in an experimental setting of teams working on a complex group task.