19 resultados para Tethered swimming
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Sperm competition exerts strong selection on males to produce spermatozoa with an optimal morphology that maximizes their fertilization success. Long sperm were first suggested to be favored because they should swim faster. However, studies that investigated the relationship between sperm length and sperm competitive ability or sperm swimming velocity yielded contradictory results. More recently, ratios of the different sections of a spermatozoon (the head, midpiece, and flagellum) were suggested to be more crucial in determining swimming velocity. Additionally, sperm ability to remain and survive in the female storage organs may also influence fertilization success, so that optimal sperm morphology may rather maximize sperm longevity than velocity. In this study, we investigated how sperm morphology is related to sperm velocity and sperm longevity in the house sparrow Passer domesticus. Sperm velocity was found to be correlated with head/flagellum ratio. Sperm with small heads relative to their flagellum showed higher swimming velocity. Additionally, shorter sperm were found to live longer. Finally, we found sperm morphological traits to vary substantially within males and the head/flagellum ratio to be unrelated to total sperm length. We discuss the hypothesis that the substantial within-male variation in sperm morphology reflects a male strategy to produce a diversity of sperm from long, fast-swimming to short, long-living sperm to maximize their fertilization success in a context of sperm competition.
Resumo:
Background Whole-body water immersion leads to a significant shift of blood from the periphery into the intra-thoracic circulation, followed by an increase in central venous pressure and heart volume. In patients with severely reduced left ventricular function, this hydrostatically in-duced volume shift might overstrain the cardiovascular adaptive mechanisms and lead to cardiac decompensation. The aim of this study is to assess the hemodynamic response to water immer-sion, gymnastics and swimming in patients with heart failure (CHF). Methods We examined 10 patients with compensated CHF (62.9 +/- 6.3 years, EF 31.5 +/- 4.1%, peak VO2 19.4 +/- 2.8 ml/kg/min.), 10 patients with coronary artery disease (CAD) but preserved left ventricular function (57.2 +/- 5.6 years, EF 63.9 +/- 5.5%, peak VO2 28.0 +/- 6.3 ml/kg/min.) and 10 healthy subjects (32.8 +/- 7.2 years, peak VO2 45.6 +/- 6.0 ml/kg/min.). Hemodynamic response to thermo-neutral (32 degrees C) water immersion and exercise was measured using a non-invasive foreign gas rebreathing method during stepwise water immersion, water gymnastics and swimming. Results Water immersion up to the chest increased cardiac index by 19% in healthy subjects, by 21% in CAD patients and 16% in CHF patients. While some CHF patients showed a decrease of stroke volume during immersion, all subjects were able to increase cardiac index (by 87% in healthy subjects, 77% in CAD patients and 53% in CHF patients). Oxygen uptake during swim-ming was 9.7 +/- 3.3 ml/kg/min. in CHF patients, 12.4 +/- 3.5 ml/kg/min. in CAD patients and 13.9 +/- 4.0 ml/kg/min. in healthy subjects. Conclusions Patients with severely reduced left ventricular function but stable clinical conditions and a minimal peak VO2 of at least 15 ml/kg/min. during a symptom-limited exercise stress test tolerate water immersion and swimming in thermo-neutral water well. Although cardiac in-dex and oxygen uptake are lower compared with CAD patients with preserved left ventricular function and healthy controls, these patients are able to increase cardiac index adequately during water immersion and swimming.
Resumo:
AIMS: Data on moderately cold water immersion and occurrence of arrhythmias in chronic heart failure (CHF) patients are scarce. METHODS AND RESULTS: We examined 22 male patients, 12 with CHF [mean age 59 years, ejection fraction (EF) 32%, NYHA class II] and 10 patients with stable coronary artery disease (CAD) without CHF (mean age 65 years, EF 52%). Haemodynamic effects of water immersion and swimming in warm (32 degrees C) and moderately cold (22 degrees C) water were measured using an inert gas rebreathing method. The occurrence of arrhythmias during water activities was compared with those measured during a 24 h ECG recording. Rate pressure product during water immersion up to the chest was significantly higher in moderately cold (P = 0.043 in CHF, P = 0.028 in CAD patients) compared with warm water, but not during swimming. Rate pressure product reached 14200 in CAD and 12 400 in CHF patients during swimming. Changes in cardiac index (increase by 5-15%) and oxygen consumption (increase up to 20%) were of similar magnitude in moderately cold and warm water. Premature ventricular contractions (PVCs) increased significantly in moderately cold water from 15 +/- 41 to 76 +/- 163 beats per 30 min in CHF (P = 0.013) but not in CAD patients (20 +/- 33 vs. 42 +/- 125 beats per 30 min, P = 0.480). No ventricular tachycardia was noted. CONCLUSION: Patients with compensated CHF tolerate water immersion and swimming in moderately cold water well. However, the increase in PVCs raises concerns about the potential danger of high-grade ventricular arrhythmias.
Resumo:
BACKGROUND: The authors have shown that rats can be retrained to swim after a moderately severe thoracic spinal cord contusion. They also found that improvements in body position and hindlimb activity occurred rapidly over the first 2 weeks of training, reaching a plateau by week 4. Overground walking was not influenced by swim training, suggesting that swimming may be a task-specific model of locomotor retraining. OBJECTIVE: To provide a quantitative description of hindlimb movements of uninjured adult rats during swimming, and then after injury and retraining. METHODS: The authors used a novel and streamlined kinematic assessment of swimming in which each limb is described in 2 dimensions, as 3 segments and 2 angles. RESULTS: The kinematics of uninjured rats do not change over 4 weeks of daily swimming, suggesting that acclimatization does not involve refinements in hindlimb movement. After spinal cord injury, retraining involved increases in hindlimb excursion and improved limb position, but the velocity of the movements remained slow. CONCLUSION: These data suggest that the activity pattern of swimming is hardwired in the rat spinal cord. After spinal cord injury, repetition is sufficient to bring about significant improvements in the pattern of hindlimb movement but does not improve the forces generated, leaving the animals with persistent deficits. These data support the concept that force (load) and pattern generation (recruitment) are independent and may have to be managed together with respect to postinjury rehabilitation.
Potentially human pathogenic Acanthamoeba isolated from a heated indoor swimming pool in Switzerland
Resumo:
Some free-living amoebae, including some species of the genus Acanthamoeba, can cause infections in humans and animals. These organisms are known to cause granulomatous amebic encephalitis (GAE) in predominantly immune-deficient persons. In the present study, we isolated a potentially human pathogenic Acanthamoeba isolate originating from a public heated indoor swimming pool in Switzerland. The amoebae, thermophilically preselected by culture at 37 degrees C, subsequently displayed a high thermotolerance, being able to grow at 42 degrees C, and a marked cytotoxicity, based on a co-culture system using the murine cell line L929. Intranasal infection of Rag2-immunodeficient mice resulted in the death of all animals within 24 days. Histopathology of brains and lungs revealed marked tissue necrosis and hemorrhagic lesions going along with massive proliferation of amoebae. PCR and sequence analysis, based on 18S rDNA, identified the agent as Acanthamoeba lenticulata. In summary, the present study reports on an Acanthamoeba isolate from a heated swimming pool suggestive of being potentially pathogenic to immunocompromised persons.
Resumo:
Extant hominoids, including humans, are well known for their inability to swim instinctively. We report swimming and diving in two captive apes using visual observation and video recording. One common chimpanzee and one orangutan swam repeatedly at the water surface over a distance of 2-6 m; both individuals submerged repeatedly. We show that apes are able to overcome their negative buoyancy by deliberate swimming, using movements which deviate from the doggy-paddle pattern observed in other primates. We suggest that apes' poor swimming ability is due to behavioral, anatomical, and neuromotor changes related to an adaptation to arboreal life in their early phylogeny. This strong adaptive focus on arboreal life led to decreased opportunities to interact with water bodies and consequently to a reduction of selective pressure to maintain innate swimming behavior. As the doggy paddle is associated with quadrupedal walking, a deviation from terrestrial locomotion might have interfered with the fixed rhythmic action patterns responsible for innate swimming.
Resumo:
Thermal acclimation is frequently cited as a means by which ectothermic animals improve their Darwinian fitness, i.e. the beneficial acclimation hypothesis. As the critical swimming speed (U (crit)) test is often used as a proxy measure of fitness, we acclimated Atlantic cod (Gadus morhua) to 4 and 10 degrees C and then assessed their U (crit) swimming performance at their respective acclimation temperatures and during acute temperature reversal. Because phenotypic differences exist between different populations of cod, we undertook these experiments in two different populations, North Sea cod and North East Arctic cod. Acclimation to 4 or 10 degrees C had a minimal effect on swimming performance or U (crit), however test temperature did, with all groups having a 10-17% higher U (crit) at 10 degrees C. The swimming efficiency was significantly lower in all groups at 4 degrees C arguably due to the compression of the muscle fibre recruitment order. This also led to a reduction in the duration of "kick and glide" swimming at 4 degrees C. No significant differences were seen between the two populations in any of the measured parameters, due possibly to the extended acclimation period. Our data indicate that acclimation imparts little benefit on U (crit) swimming test in Atlantic cod. Further efforts need to identify the functional consequences of the long-term thermal acclimation process.
Resumo:
Traditionally, critical swimming speed has been defined as the speed when a fish can no longer propel itself forward, and is exhausted. To gain a better understanding of the metabolic processes at work during a U(crit) swim test, and that lead to fatigue, we developed a method using in vivo (31)P-NMR spectroscopy in combination with a Brett-type swim tunnel. Our data showed that a metabolic transition point is reached when the fish change from using steady state aerobic metabolism to non-steady state anaerobic metabolism, as indicated by a significant increase in inorganic phosphate levels from 0.3+/-0.3 to 9.5+/-3.4 mol g(-1), and a drop in intracellular pH from 7.48+/-0.03 to 6.81+/-0.05 in muscle. This coincides with the point when the fish change gait from subcarangiform swimming to kick-and-glide bursts. As the number of kicks increased, so too did the Pi concentration, and the pH(i) dropped. Both changes were maximal at U(crit). A significant drop in Gibbs free energy change of ATP hydrolysis from -55.6+/-1.4 to -49.8+/-0.7 kJ mol(-1) is argued to have been involved in fatigue. This confirms earlier findings that the traditional definition of U(crit), unlike other critical points that are typically marked by a transition from aerobic to anaerobic metabolism, is the point of complete exhaustion of both aerobic and anaerobic resources.