13 resultados para Terminals (Transportation)
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Over the last decade, the end-state comfort effect (e.g., Rosenbaum et al., 2006) has received a considerable amount of attention. However, some of the underlying mechanisms are still to be investigated, amongst others, how sequential planning affects end-state comfort and how this effect develops over learning. In a two-step sequencing task, e.g., postural comfort can be planned on the intermediate position (next state) or on the actual end position (final state). It might be hypothesized that, in initial acquisition, next state’s comfort is crucial for action planning but that, in the course of learning, final state’s comfort is taken more and more into account. To test this hypothesis, a variant of Rosenbaum’s vertical stick transportation task was used. Participants (N = 16, right-handed) received extensive practice on a two-step transportation task (10,000 trials over 12 sessions). From the initial position on the middle stair of a staircase in front of the participant, the stick had to be transported either 20 cm upwards and then 40 cm downwards or 20 cm downwards and then 40 cm upwards (N = 8 per subgroup). Participants were supposed to produce fluid movements without changing grasp. In the pre- and posttest, participants were tested on both two-step sequencing tasks as well as on 20 cm single-step upwards and downwards movements (10 trials per condition). For the test trials, grasp height was calculated kinematographically. In the pretest, large end/next/final-state comfort effects for single-step transportation tasks and large next-state comfort effects for sequenced tasks were found. However, no change in grasp height from pre- to posttest could be revealed. Results show that, in vertical stick transportation sequences, the final state is not taken into account when planning grasp height. Instead, action planning seems to be solely based on aspects of the next action goal that is to be reached.
Resumo:
BACKGROUNDS In vitro fertilization involves high dosage gonadotropin stimulation, which apparently has some negative impact on follicular endocrine function. As chorionic gonadotropin stimulation has been shown to increase the blood-follicular permeability in animal models, this raises the question if such an effect also applies to gonadotropins in humans, possibly affecting the endocrine follicular milieu. FINDINGS Follicular fluid and serum were collected at the time of follicular aspiration in in vitro fertilisation without (Natural cycle IVF, n = 24) and with (conventional gonadotropin stimulated IVF, n = 31) gonadotropin stimulation. The concentration of the extra-ovarian hormones prolactin and cortisol were analysed by immunoassays. RESULTS Median serum prolactin and cortisol concentrations were 12.3 ng/mL and 399 nmol/L without versus 32.2 ng/mL and 623 nmol/L with gonadotropin stimulation. The corresponding concentrations in follicular fluid were 20.6 ng/mL and 445 nmol/L versus 28.8 ng/ml and 456 nmol/L for prolactin and cortisol. As a consequence, mean follicular fluid:serum ratios were significantly reduced under gonadotropin stimulation (prolactin p = 0.0138, cortisol p = 0.0001). As an enhanced blood-follicular permeability and transportation, induced by gonadotropin stimulation, would result in increased instead of decreased follicular fluid:serum ratios as found in this study, it can be assumed that this does not affect extra-ovarian protein and steroid hormones as illustrated by prolactin and cortisol. CONCLUSIONS The model of serum follicular fluid:serum ratio of hormones, produced outside the ovaries, did not reveal a gonadotropin induced increased blood-follicular transportation capacity. Therefore it can be assumed that the effect of gonadotropins on follicular endocrine function is not due to an increased ovarian permeability of extra-ovarian hormones.