3 resultados para Tensile stress
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
In chick embryo fibroblasts, the mRNA for extracellular matrix protein tenascin-C is induced 2-fold by cyclic strain (10%, 0.3 Hz, 6 h). This response is attenuated by inhibiting Rho-dependent kinase (ROCK). The RhoA/ROCK signaling pathway is primarily involved in actin dynamics. Here, we demonstrate its crucial importance in regulating tenascin-C expression. Cyclic strain stimulated RhoA activation and induced fibroblast contraction. Chemical activators of RhoA synergistically enhanced the effects of cyclic strain on cell contractility. Interestingly, tenascin-C mRNA levels perfectly matched the extent of RhoA/ROCK-mediated actin contraction. First, RhoA activation by thrombin, lysophosphatidic acid, or colchicine induced tenascin-C mRNA to a similar extent as strain. Second, RhoA activating drugs in combination with cyclic strain caused a super-induction (4- to 5-fold) of tenascin-C mRNA, which was again suppressed by ROCK inhibition. Third, disruption of the actin cytoskeleton with latrunculin A abolished induction of tenascin-C mRNA by chemical RhoA activators in combination with cyclic strain. Lastly, we found that myosin II activity is required for tenascin-C induction by cyclic strain. We conclude that RhoA/ROCK-controlled actin contractility has a mechanosensory function in fibroblasts that correlates directly with tenascin-C gene expression. Previous RhoA/ROCK activation, either by chemical or mechanical signals, might render fibroblasts more sensitive to external tensile stress, e.g., during wound healing.
Resumo:
Determining the formation temperature of minerals using fluid inclusions is a crucial step in understanding rock-forming scenarios. Unfortunately, fluid inclusions in minerals formed at low temperature, such as gypsum, are commonly in a metastable monophase liquid state. To overcome this problem, ultra-short laser pulses can be used to induce vapor bubble nucleation, thus creating a stable two-phase fluid inclusion appropriate for subsequent measurements of the liquid-vapor homogenization temperature, T-h. In this study we evaluate the applicability of T-h data to accurately determine gypsum formation temperatures. We used fluid inclusions in synthetic gypsum crystals grown in the laboratory at different temperatures between 40 degrees C and 80 degrees C under atmospheric pressure conditions. We found an asymmetric distribution of the T-h values, which are systematically lower than the actual crystal growth temperatures, T-g; this is due to (1) the effect of surface tension on liquid-vapor homogenization, and (2) plastic deformation of the inclusion walls due to internal tensile stress occurring in the metastable state of the inclusions. Based on this understanding, we have determined growth temperatures of natural giant gypsum crystals from Naica (Mexico), yielding 47 +/- 1.5 degrees C for crystals grown in the Cave of Swords (120 m below surface) and 54.5 +/- 2 degrees C for giant crystals grown in the Cave of Crystals (290 m below surface). These results support the earlier hypothesis that the population and the size of the Naica crystals were controlled by temperature. In addition, this experimental method opens a door to determining the growth temperature of minerals forming in low-temperature environments.
Resumo:
Expression of the extracellular matrix (ECM) protein tenascin-C is induced in fibroblasts by growth factors as well as by tensile strain. Mechanical stress can act on gene regulation directly, or indirectly via the paracrine release of soluble factors by the stimulated cells. To distinguish between these possibilities for tenascin-C, we asked whether cyclic tensile strain and soluble factors, respectively, induced its mRNA via related or separate mechanisms. When cyclic strain was applied to chick embryo fibroblasts cultured on silicone membranes, tenascin-C mRNA and protein levels were increased twofold within 6 h compared to the resting control. Medium conditioned by strained cells did not stimulate tenascin-C mRNA in resting cells. Tenascin-C mRNA in resting cells was increased by serum; however, cyclic strain still caused an additional induction. Likewise, the effect of TGF-beta1 or PDGF-BB was additive to that of cyclic strain, whereas IL-4 or H2O2 (a reactive oxygen species, ROS) did not change tenascin-C mRNA levels. Antagonists for distinct mitogen-activated protein kinases (MAPK) inhibited tenascin-C induction by TGF-beta1 and PDGF-BB, but not by cyclic strain. Conversely, a specific inhibitor of Rho-dependent kinase strongly attenuated the response of tenascin-C mRNA to cyclic strain, but had limited effect on induction by growth factors. The data suggest that regulation of tenascin-C in fibroblasts by cyclic strain occurs independently from soluble mediators and MAPK pathways; however, it requires Rho/ROCK signaling.