9 resultados para Template-based
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Introduction: The aim of this systematic review was to analyze the dental literature regarding accuracy and clinical application in computer-guided template-based implant dentistry. Materials and methods: An electronic literature search complemented by manual searching was performed to gather data on accuracy and surgical, biological and prosthetic complications in connection with computer-guided implant treatment. For the assessment of accuracy meta-regression analysis was performed. Complication rates are descriptively summarized. Results: From 3120 titles after the literature search, eight articles met the inclusion criteria regarding accuracy and 10 regarding the clinical performance. Meta-regression analysis revealed a mean deviation at the entry point of 1.07 mm (95% CI: 0.76-1.22 mm) and at the apex of 1.63 mm (95% CI: 1.26-2 mm). No significant differences between the studies were found regarding method of template production or template support and stabilization. Early surgical complications occurred in 9.1%, early prosthetic complications in 18.8% and late prosthetic complications in 12% of the cases. Implant survival rates of 91-100% after an observation time of 12-60 months are reported in six clinical studies with 537 implants mainly restored immediately after flapless implantation procedures. Conclusion: Computer-guided template-based implant placement showed high implant survival rates ranging from 91% to 100%. However, a considerable number of technique-related perioperative complications were observed. Preclinical and clinical studies indicated a reasonable mean accuracy with relatively high maximum deviations. Future research should be directed to increase the number of clinical studies with longer observation periods and to improve the systems in terms of perioperative handling, accuracy and prosthetic complications.
Resumo:
We propose a computationally efficient and biomechanically relevant soft-tissue simulation method for cranio-maxillofacial (CMF) surgery. A template-based facial muscle reconstruction was introduced to minimize the efforts on preparing a patient-specific model. A transversely isotropic mass-tensor model (MTM) was adopted to realize the effect of directional property of facial muscles in reasonable computation time. Additionally, sliding contact around teeth and mucosa was considered for more realistic simulation. Retrospective validation study with postoperative scan of a real patient showed that there were considerable improvements in simulation accuracy by incorporating template-based facial muscle anatomy and sliding contact.
Resumo:
Real-time PCR (qPCR) is the method of choice for quantification of mitochondrial DNA (mtDNA) by relative comparison of a nuclear to a mitochondrial locus. Quantitative abnormal mtDNA content is indicative of mitochondrial disorders and mostly confines in a tissue-specific manner. Thus handling of degradation-prone bioptic material is inevitable. We established a serial qPCR assay based on increasing amplicon size to measure degradation status of any DNA sample. Using this approach we can exclude erroneous mtDNA quantification due to degraded samples (e.g. long post-exicision time, autolytic processus, freeze-thaw cycles) and ensure abnormal DNA content measurements (e.g. depletion) in non-degraded patient material. By preparation of degraded DNA under controlled conditions using sonification and DNaseI digestion we show that erroneous quantification is due to the different preservation qualities of the nuclear and the mitochondrial genome. This disparate degradation of the two genomes results in over- or underestimation of mtDNA copy number in degraded samples. Moreover, as analysis of defined archival tissue would allow to precise the molecular pathomechanism of mitochondrial disorders presenting with abnormal mtDNA content, we compared fresh frozen (FF) with formalin-fixed paraffin-embedded (FFPE) skeletal muscle tissue of the same sample. By extrapolation of measured decay constants for nuclear DNA (λnDNA) and mtDNA (λmtDNA) we present an approach to possibly correct measurements in degraded samples in the future. To our knowledge this is the first time different degradation impact of the two genomes is demonstrated and which evaluates systematically the impact of DNA degradation on quantification of mtDNA copy number.
Resumo:
DNA methylation analysis currently requires complex multistep procedures based on bisulfite conversion of unmethylated cytosines or on methylation-sensitive endonucleases. To facilitate DNA methylation analysis, we have developed a quantitative 1-step assay for DNA methylation analysis.
Resumo:
The apxIVA gene, a recently discovered RTX determinant of Actinobacillus pleuropneumoniae, was shown to be species-specific. DNA hybridization experiments using probes for various regions of apxIVA revealed that the 3'-terminus of this gene was present in all 14 serotypes of A. pleuropneumoniae but absent from phylogenetically related species. A primer pair spanning this region specifically amplified a 422bp fragment in PCR experiments with DNA from the reference strains of the 14 serotypes and 194 field strains isolated from various geographic locations worldwide. DNA sequence analysis of PCR products derived from all serotypes were identical except in serotypes 3, 8, and 10, which showed minor differences. The PCR did not amplify any product when DNA from 17 different bacterial species closely related to A. pleuropneumoniae was used as template. In addition, the PCR was negative with DNA of several Actinobacillus sp. which were initially characterized as A. pleuropneumoniae using routine phenotypic and serological analyses but which were subsequently shown by 16S rRNA sequence analysis to belong to yet undefined Actinobacillus species. The sensitivity of the PCR was determined to be 10pg of A. pleuropneumoniae DNA. A set of nested primers amplified a 377bp fragment specifically with A. pleuropneumoniae DNA. DNA titration experiments using the flanking and nested primer pairs showed an improved level of sensitivity to approximately 10fg of genomic DNA. The nested PCR was used to monitor the spread of A. pleuropneumoniae in pigs experimentally infected with a virulent serotype 1 strain and housed in a controlled environment facility. A. pleuropneumoniae DNA could be detected by nested PCR in nasal swab samples of infected pigs receiving either a high dose (5x10(5)) or a low dose (1x10(4)) challenge and in unchallenged cohorts that were contact-infected by the inoculated animals. Furthermore, PCR confirmed the presence of A. pleuropneumoniae in 16/17 homogenates from necrotic lung lesions, while the bacterium was successfully recovered from 13 of these lesions by culture.
Resumo:
Due to their outstanding resolution and well-constrained chronologies, Greenland ice-core records provide a master record of past climatic changes throughout the Last Interglacial–Glacial cycle in the North Atlantic region. As part of the INTIMATE (INTegration of Ice-core, MArine and TErrestrial records) project, protocols have been proposed to ensure consistent and robust correlation between different records of past climate. A key element of these protocols has been the formal definition and ordinal numbering of the sequence of Greenland Stadials (GS) and Greenland Interstadials (GI) within the most recent glacial period. The GS and GI periods are the Greenland expressions of the characteristic Dansgaard–Oeschger events that represent cold and warm phases of the North Atlantic region, respectively. We present here a more detailed and extended GS/GI template for the whole of the Last Glacial period. It is based on a synchronization of the NGRIP, GRIP, and GISP2 ice-core records that allows the parallel analysis of all three records on a common time scale. The boundaries of the GS and GI periods are defined based on a combination of stable-oxygen isotope ratios of the ice (δ18O, reflecting mainly local temperature) and calcium ion concentrations (reflecting mainly atmospheric dust loading) measured in the ice. The data not only resolve the well-known sequence of Dansgaard–Oeschger events that were first defined and numbered in the ice-core records more than two decades ago, but also better resolve a number of short-lived climatic oscillations, some defined here for the first time. Using this revised scheme, we propose a consistent approach for discriminating and naming all the significant abrupt climatic events of the Last Glacial period that are represented in the Greenland ice records. The final product constitutes an extended and better resolved Greenland stratotype sequence, against which other proxy records can be compared and correlated. It also provides a more secure basis for investigating the dynamics and fundamental causes of these climatic perturbations.
Resumo:
Self-amplifying replicon RNA (RepRNA) are large molecules (12-14kb); their self-replication amplifies mRNA template numbers, affording several rounds of antigen production, effectively increasing vaccine antigen payloads. Their sensitivity to RNase-sensitivity and inefficient uptake by dendritic cells (DCs) - absolute requirements for vaccine design - were tackled by condensing RepRNA into synthetic, nanoparticulate, polyethylenimine (PEI)-polyplex delivery vehicles. Polyplex-delivery formulations for small RNA molecules cannot be transferred to RepRNA due to its greater size and complexity; the N:P charge ratio and impact of RepRNA folding would influence polyplex condensation, post-delivery decompaction and the cytosolic release essential for RepRNA translation. Polyplex-formulations proved successful for delivery of RepRNA encoding influenza virus hemagglutinin and nucleocapsid to DCs. Cytosolic translocation was facilitated, leading to RepRNA translation. This efficacy was confirmed in vivo, inducing both humoral and cellular immune responses. Accordingly, this paper describes the first PEI-polyplexes providing efficient delivery of the complex and large, self-amplifying RepRNA vaccines.