18 resultados para Temperature field

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The cultivation of genetically modified (GM) plants has raised several environmental concerns. One of these concerns regards non-target soil fauna organisms, which play an important role in the decomposition of organic matter and hence are largely exposed to GM plant residues. Soil fauna may be directly affected by transgene products or indirectly by pleiotropic effects such as a modified plant metabolism. Thus, ecosystem services and functioning might be affected negatively. In a litterbag experiment in the field we analysed the decomposition process and the soil fauna community involved. Therefore, we used four experimental GM wheat varieties, two with a race-specific antifungal resistance against powdery mildew (Pm3b) and two with an unspecific antifungal resistance based on the expression of chitinase and glucanase. We compared them with two non-GM isolines and six conventional cereal varieties. To elucidate the mechanisms that cause differences in plant decomposition, structural plant components (i.e. C:N ratio, lignin, cellulose, hemicellulose) were examined and soil properties, temperature and precipitation were monitored. The most frequent taxa extracted from decaying plant material were mites (Cryptostigmata, Gamasina and Uropodina), springtails (Isotomidae), annelids (Enchytraeidae) and Diptera (Cecidomyiidae larvae). Despite a single significant transgenic/month interaction for Cecidomyiidae larvae, which is probably random, we detected no impact of the GM wheat on the soil fauna community. However, soil fauna differences among conventional cereal varieties were more pronounced than between GM and non-GM wheat. While leaf residue decomposition in GM and non-GM wheat was similar, differences among conventional cereals were evident. Furthermore, sampling date and location were found to greatly influence soil fauna community and decomposition processes. The results give no indication of ecologically relevant adverse effects of antifungal GM wheat on the composition and the activity of the soil fauna community.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fossils of chironomid larvae (non-biting midges) preserved in lake sediments are well-established palaeotemperature indicators which, with the aid of numerical chironomid-based inference models (transfer functions), can provide quantitative estimates of past temperature change. This approach to temperature reconstruction relies on the strong relationship between air and lake surface water temperature and the distribution of individual chironomid taxa (species, species groups, genera) that has been observed in different climate regions (arctic, subarctic, temperate and tropical) in both the Northern and Southern hemisphere. A major complicating factor for the use of chironomids for palaeoclimate reconstruction which increases the uncertainty associated with chironomid-based temperature estimates is that the exact nature of the mechanism responsible for the strong relationship between temperature and chironomid assemblages in lakes remains uncertain. While a number of authors have provided state of the art overviews of fossil chironomid palaeoecology and the use of chironomids for temperature reconstruction, few have focused on examining the ecological basis for this approach. Here, we review the nature of the relationship between chironomids and temperature based on the available ecological evidence. After discussing many of the surveys describing the distribution of chironomid taxa in lake surface sediments in relation to temperature, we also examine evidence from laboratory and field studies exploring the effects of temperature on chironomid physiology, life cycles and behaviour. We show that, even though a direct influence of water temperature on chironomid development, growth and survival is well described, chironomid palaeoclimatology is presently faced with the paradoxical situation that the relationship between chironomid distribution and temperature seems strongest in relatively deep, thermally stratified lakes in temperate and subarctic regions in which the benthic chironomid fauna lives largely decoupled from the direct influence of air and surface water temperature. This finding suggests that indirect effects of temperature on physical and chemical characteristics of lakes play an important role in determining the distribution of lake-living chironomid larvae. However, we also demonstrate that no single indirect mechanism has been identified that can explain the strong relationship between chironomid distribution and temperature in all regions and datasets presently available. This observation contrasts with the previously published hypothesis that climatic effects on lake nutrient status and productivity may be largely responsible for the apparent correlation between chironomid assemblage distribution and temperature. We conclude our review by summarizing the implications of our findings for chironomid-based palaeoclimatology and by pointing towards further avenues of research necessary to improve our mechanistic understanding of the chironomid-temperature relationship.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

MIPAS observations of temperature, water vapor, and ozone in October 2009 as derived with the scientific level-2 processor run by Karlsruhe Institute of Technology (KIT), Institute for Meteorology and Climate Research (IMK) and CSIC, Instituto de Astrofísica de Andalucía (IAA) and retrieved from version 4.67 level-1b data have been compared to co-located field campaign observations obtained during the MOHAVE-2009 campaign at the Table Mountain Facility near Pasadena, California in October 2009. The MIPAS measurements were validated regarding any potential biases of the profiles, and with respect to their precision estimates. The MOHAVE-2009 measurement campaign provided measurements of atmospheric profiles of temperature, water vapor/relative humidity, and ozone from the ground to the mesosphere by a suite of instruments including radiosondes, ozonesondes, frost point hygrometers, lidars, microwave radiometers and Fourier transform infra-red (FTIR) spectrometers. For MIPAS temperatures (version V4O_T_204), no significant bias was detected in the middle stratosphere; between 22 km and the tropopause MIPAS temperatures were found to be biased low by up to 2 K, while below the tropopause, they were found to be too high by the same amount. These findings confirm earlier comparisons of MIPAS temperatures to ECMWF data which revealed similar differences. Above 12 km up to 45 km, MIPAS water vapor (version V4O_H2O_203) is well within 10% of the data of all correlative instruments. The well-known dry bias of MIPAS water vapor above 50 km due to neglect of non-LTE effects in the current retrievals has been confirmed. Some instruments indicate that MIPAS water vapor might be biased high by 20 to 40% around 10 km (or 5 km below the tropopause), but a consistent picture from all comparisons could not be derived. MIPAS ozone (version V4O_O3_202) has a high bias of up to +0.9 ppmv around 37 km which is due to a non-identified continuum like radiance contribution. No further significant biases have been detected. Cross-comparison to co-located observations of other satellite instruments (Aura/MLS, ACE-FTS, AIRS) is provided as well.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As a species of major interest for aquaculture, the sex determination system (SDS) of Nile tilapia, Oreochromis niloticus, has been widely investigated. In this species, sex determination is considered to be governed by the interactions between a complex system of genetic sex determination factors (GSD) and the influence of temperature (TSD) during a critical period. Previous studies were exclusively carried out on domestic stocks with the genetic and maintenance limitations associated. Given the wide distribution and adaptation potential of the Nile tilapia, we investigated under controlled conditions the sex determination system of natural populations adapted to three extreme thermal regimes: stable extreme environments in Ethiopia, either cold temperatures in a highland lake (Lake Koka), or warm temperatures in hydrothermal springs (Lake Metahara), and an environment with large seasonal variations in Ghana (Kpandu, Lake Volta). The sex ratio analysis was conducted on progenies reared under constant basal (27 degrees C) or high (36 degrees C) temperatures during the 30 days following yolk-sac resorption. Sex ratios of the progenies reared at standard temperature suggest that the three populations share a similar complex GSD system based on a predominant male heterogametic factor with additional influences of polymorphism at this locus and/or action of minor factors. The three populations presented a clear thermosensitivity of sex differentiation, with large variations in the intensity of response depending on the parents. This confirms the presence of genotype-environment interactions in TSD of Nile tilapia. Furthermore the existence of naturally sex-reversed individuals is strongly suggested in two populations (Kpandu and Koka). However, it was not possible here to infer if the sex-inversion resulted from minor genetic factors and/or environmental influences. The present study demonstrated for the first time the conservation of a complex SDS combining polymorphic GSD and TSD components in natural populations of Nile tilapia. We discuss the evolutionary implications of our findings and highlight the importance of field investigations of sex determination. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Arctic landscapes have visually striking patterns of small polygons, circles, and hummocks. The linkages between the geophysical and biological components of these systems and their responses to climate changes are not well understood. The "Biocomplexity of Patterned Ground Ecosystems" project examined patterned-ground features (PGFs) in all five Arctic bioclimate subzones along an 1800-km trans-Arctic temperature gradient in northern Alaska and northwestern Canada. This paper provides an overview of the transect to illustrate the trends in climate, PGFs, vegetation, n-factors, soils, active-layer depth, and frost heave along the climate gradient. We emphasize the thermal effects of the vegetation and snow on the heat and water fluxes within patterned-ground systems. Four new modeling approaches build on the theme that vegetation controls microscale soil temperature differences between the centers and margins of the PGFs, and these in turn drive the movement of water, affect the formation of aggradation ice, promote differential soil heave, and regulate a host of system propel-ties that affect the ability of plants to colonize the centers of these features. We conclude with an examination of the possible effects of a climate wan-ning on patterned-ground ecosystems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a comparison of principal component (PC) regression and regularized expectation maximization (RegEM) to reconstruct European summer and winter surface air temperature over the past millennium. Reconstruction is performed within a surrogate climate using the National Center for Atmospheric Research (NCAR) Climate System Model (CSM) 1.4 and the climate model ECHO-G 4, assuming different white and red noise scenarios to define the distortion of pseudoproxy series. We show how sensitivity tests lead to valuable “a priori” information that provides a basis for improving real world proxy reconstructions. Our results emphasize the need to carefully test and evaluate reconstruction techniques with respect to the temporal resolution and the spatial scale they are applied to. Furthermore, we demonstrate that uncertainties inherent to the predictand and predictor data have to be more rigorously taken into account. The comparison of the two statistical techniques, in the specific experimental setting presented here, indicates that more skilful results are achieved with RegEM as low frequency variability is better preserved. We further detect seasonal differences in reconstruction skill for the continental scale, as e.g. the target temperature average is more adequately reconstructed for summer than for winter. For the specific predictor network given in this paper, both techniques underestimate the target temperature variations to an increasing extent as more noise is added to the signal, albeit RegEM less than with PC regression. We conclude that climate field reconstruction techniques can be improved and need to be further optimized in future applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Proliferative kidney disease (PKD) is a temperature-dependent disease caused by the myxozoan Tetracapsuloides bryosalmonae. It is an emerging threat to wild brown trout Salmo trutta fario populations in Switzerland. Here we examined (1) how PKD prevalence and pathology in young-of-the-year (YOY) brown trout relate to water temperature, (2) whether wild brown trout can completely recover from T. bryosalmonae-induced renal lesions and eliminate T. bryo - salmonae over the winter months, and (3) whether this rate and/or extent of the recovery is influenced by concurrent infection. A longitudinal field study on a wild brown trout cohort was conducted over 16 mo. YOY and age 1+ fish were sampled from 7 different field sites with various temperature regimes, and monitored for infection with T. bryosalmonae and the nematode Raphidascaris acus. T. bryosamonae was detectable in brown trout YOY from all sampling sites, with similar renal pathology, independent of water temperature. During winter months, recovery was mainly influenced by the presence or absence of concurrent infection with R. acus larvae. While brown trout without R. acus regenerated completely, concurrently infected brown trout showed incomplete recovery, with chronic renal lesions and incomplete translocation of T. bryosalmonae from the renal interstitium into the tubular lumen. Water temperature seemed to influence complete excretion of T. bryosalmonae, with spores remaining in trout from summer-warm rivers, but absent in trout from summer-cool rivers. In the following summer months, we found PKD infections in 1+ brown trout from all investigated river sites. The pathological lesions indicated a reinfection rather than a proliferation of remaining T. bryosalmonae. However, disease prevalence in 1+ trout was lower than in YOY.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Infrared thermography (IRT) was used to detect digital dermatitis (DD) prior to routine claw trimming. A total of 1192 IRT observations were collected from 149 cows on eight farms. All cows were housed in tie-stalls. The maximal surface temperatures of the coronary band (CB) region and skin (S) of the fore and rear feet (mean value of the maximal surface temperatures of both digits for each foot separately, CBmax and Smax) were assessed. Grouping was performed at the foot level (presence of DD, n=99; absence, n=304), or at the cow level (all four feet healthy, n=24) or where there was at least one DD lesion on the rear feet, n=37). For individual cows (n=61), IRT temperature difference was determined by subtracting the mean sum of CBmax and Smax of the rear feet from that of the fore feet. Feet with DD had higher CBmax and Smax (P<0.001) than healthy feet. Smax was significantly higher in feet with infectious DD lesions (M-stage: M2+M4; n=15) than in those with non-infectious M-lesions (M1+M3; n=84) (P=0.03), but this was not the case for CBmax (P=0.12). At the cow level, an optimal cut-off value for detecting DD of 0.99°C (IRT temperature difference between rear and front feet) yielded a sensitivity of 89.1% and a specificity of 66.6%. The results indicate that IRT may be a useful non-invasive diagnostic tool to screen for the presence of DD in dairy cows by measuring CBmax and Smax.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: High dilutions of various starting materials, e.g. copper sulfate, Hypericum perforatum and sulfur, showed significant differences from controls and amongst different dilution levels in ultraviolet light (UV) transmission [1,2]. Exposure of high dilutions to external physical factors such as UV light or elevated temperature (37°C) also yielded significantly different UV transmissions compared to unexposed dilutions [2,3]. In a study with highland frogs it was shown that animals incubated with thyroxine 30c but not with thyroxine 30c exposed to electromagnetic fields (EMFs) of a microwave oven or mobile phone metamorphosed more slowly than control animals [4]. Aims: The aim was to test whether the EMF of a mobile phone influences the UV absorbance of dilutions of quartz and Atropa belladonna (AB). Methodology: Commercially available dilutions of 6x, 12x, 15x, 30x in H2O and 19% ethanol of quartz (SiO2) and of 4x, 6x, 12x, 15x, 30x in H2O and 19% ethanol of AB were used in the experiments (Weleda AG, Arlesheim, Switzerland). Four samples of each dilution were exposed to the EMF of a mobile phone (Philips, Savvy Dual Band) at 900 MHz with an output of 2 W for 3 h, while control samples (4 of each dilution) were kept in a separate room. Absorbance of the samples in the UV range (from 190 to 340 nm) was measured in a randomized order with a Shimadzu UV-1800 spectrophotometer equipped with an auto sampler. In total 5 separate measurement days will be carried out for quartz and for AB dilutions. The average absorbance from 200 to 340 nm and from 200 to 240 nm was compared among dilution levels using a Kruskal-Wallis test and between exposed and unexposed samples using a Mann-Whitney-U test. Results: Preliminary results after 2 measurement days indicated that for quartz the absorbance of the various dilution levels was different from each other (except 12x and 15x), and that samples exposed to an EMF did not show a difference in UV absorbance from unexposed samples. Preliminary results after one measurement day indicated that for AB the absorbance of the various dilution levels was different from each other. The samples exposed to an EMF did not show a difference in UV absorbance from unexposed samples (except 4x in the range from 200 – 240 nm). Conclusions: These results suggest that exposure of high dilutions of quartz and AB to a mobile phone EMF as used here does not alter UV absorbance of these dilutions. The final results will show whether this holds true.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE Precise temperature measurements in the magnetic field are indispensable for MR safety studies and for temperature calibration during MR-guided thermotherapy. In this work, the interference of two commonly used fiber-optical temperature measurement systems with the static magnetic field B0 was determined. METHODS Two fiber-optical temperature measurement systems, a GaAs-semiconductor and a phosphorescent phosphor ceramic, were compared for temperature measurements in B0 . The probes and a glass thermometer for reference were placed in an MR-compatible tube phantom within a water bath. Temperature measurements were carried out at three different MR systems covering static magnetic fields up to B0  = 9.4T, and water temperatures were changed between 25°C and 65°C. RESULTS The GaAs-probe significantly underestimated absolute temperatures by an amount related to the square of B0 . A maximum difference of ΔT = -4.6°C was seen at 9.4T. No systematic temperature difference was found with the phosphor ceramic probe. For both systems, the measurements were not dependent on the orientation of the sensor to B0 . CONCLUSION Temperature measurements with the phosphor ceramic probe are immune to magnetic fields up to 9.4T, whereas the GaAs-probes either require a recalibration inside the MR system or a correction based on the square of B0 . Magn Reson Med, 2014. © 2014 Wiley Periodicals, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study aims at assessing the skill of several climate field reconstruction techniques (CFR) to reconstruct past precipitation over continental Europe and the Mediterranean at seasonal time scales over the last two millennia from proxy records. A number of pseudoproxy experiments are performed within the virtual reality ofa regional paleoclimate simulation at 45 km resolution to analyse different aspects of reconstruction skill. Canonical Correlation Analysis (CCA), two versions of an Analog Method (AM) and Bayesian hierarchical modeling (BHM) are applied to reconstruct precipitation from a synthetic network of pseudoproxies that are contaminated with various types of noise. The skill of the derived reconstructions is assessed through comparison with precipitation simulated by the regional climate model. Unlike BHM, CCA systematically underestimates the variance. The AM can be adjusted to overcome this shortcoming, presenting an intermediate behaviour between the two aforementioned techniques. However, a trade-off between reconstruction-target correlations and reconstructed variance is the drawback of all CFR techniques. CCA (BHM) presents the largest (lowest) skill in preserving the temporal evolution, whereas the AM can be tuned to reproduce better correlation at the expense of losing variance. While BHM has been shown to perform well for temperatures, it relies heavily on prescribed spatial correlation lengths. While this assumption is valid for temperature, it is hardly warranted for precipitation. In general, none of the methods outperforms the other. All experiments agree that a dense and regularly distributed proxy network is required to reconstruct precipitation accurately, reflecting its high spatial and temporal variability. This is especially true in summer, when a specifically short de-correlation distance from the proxy location is caused by localised summertime convective precipitation events.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study investigates thermally induced tensile stresses in ceramic tilings. Daily and seasonal thermal cycles, as well as, rare but extreme events, such as a hail-storm striking a heated terrace tiling, were studied in the field and by numerical modeling investigations. The field surveys delivered temperature– time diagrams and temperature profiles across tiling systems. These data were taken as input parameters for modeling the stress distribution in the tiling system in order to detect potential sites for material failure. Dependent on the thermal scenario (e.g., slow heating of the entire structure during morning and afternoon, or a rapid cooling of the tiles by a rain storm) the modeling indicates specific locations with high tensile stresses. Typically regions along the rim of the tiling field showed stresses, which can become critical with respect to the adhesion strength. Over the years, ongoing cycles of thermal expansion–contraction result in material fatigue promoting the propagation of cracks. However, the installation of flexible waterproofing membranes (applied between substrate and tile adhesive) represents an efficient technical innovation to reduce such crack propagation as confirmed by both numerical modeling results and microstructural studies on real systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High-resolution records of calibrated proxy data for the past millennium are fundamental to place current changes into the context of pre-industrial natural forced and unforced variability. Although the need for regional spatially-explicit comprehensive reconstructions is widely recognized, the proxy data sources are still scarce, particularly for the Southern Hemisphere and especially for South America. We present a 600-year long warm season temperature record from varved sediments of Lago Plomo, a proglacial lake of the Northern Patagonian Ice field in Southern Chile (46°59′S, 72°52′W, 203 m a.s.l.). The thickness of the bright summer sediment layer relative to the dark winter layer (measured as total brightness; % reflectance 400–730 nm) is calibrated against warm season SONDJF temperature (1900–2009; r = 0.58, p(aut) = 0.056, RE = 0.52; CE = 0.15, RMSEP = 0.28 °C; five-year triangular filtered data). In Lago Plomo, warm summer temperatures lead to enhanced glacier melt and suspended sediment transport, which results in thicker light summer layers and to brighter sediments. Although Patagonia shows pronounced regional differences in decadal temperature trends and variability, the 600 years temperature reconstruction from Lago Plomo compares favourably with other regional/continental temperature records, but also emphasizes significant regional differences for which no data and information existed so far. These regional differences seem to be real as they are also reflected in modern climate data sets (1900–2010). The reconstruction shows pronounced subdecadal – multidecadal variability with cold phases during parts of the Little Ice Age (16th and 18th centuries) and in the beginning of the 20th century. The most prominent warm phase is the 19th century which is as warm as the second half of the 20th century. The exceptional summer warmth AD 1780–1810 is also found in other archives of Northern Patagonia and Central Chile. Our record shows the delayed 20th century warming in the Southern Hemisphere. The comparison between winter precipitation and summer temperature (inter-seasonal coupling) from Lago Plomo reveals alternating phases with parallel and contrasting decadal trends of winter precipitation and summer temperature (positive and negative running correlations Rwinter PP; summer TT). This observation from the sediment proxy data is also confirmed by two sets of reanalysis data for the 20th century. Reanalysis data show that phases with negative correlations between winter precipitation and summer temperature (e.g., dry winters and warm summers) at Lago Plomo are characteristic for periods when circumpolar Westerly flow is displaced southward and enhanced around 60°S.