11 resultados para Temperature dependence

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVES To investigate and correct the temperature dependence of postmortem MR quantification used for soft tissue characterization and differentiation in thoraco-abdominal organs. MATERIAL AND METHODS Thirty-five postmortem short axis cardiac 3-T MR examinations were quantified using a quantification sequence. Liver, spleen, left ventricular myocardium, pectoralis muscle and subcutaneous fat were analysed in cardiac short axis images to obtain mean T1, T2 and PD tissue values. The core body temperature was measured using a rectally inserted thermometer. The tissue-specific quantitative values were related to the body core temperature. Equations to correct for temperature differences were generated. RESULTS In a 3D plot comprising the combined data of T1, T2 and PD, different organs/tissues could be well differentiated from each other. The quantitative values were influenced by the temperature. T1 in particular exhibited strong temperature dependence. The correction of quantitative values to a temperature of 37 °C resulted in better tissue discrimination. CONCLUSION Postmortem MR quantification is feasible for soft tissue discrimination and characterization of thoraco-abdominal organs. This provides a base for computer-aided diagnosis and detection of tissue lesions. The temperature dependence of the T1 values challenges postmortem MR quantification. Equations to correct for the temperature dependence are provided. KEY POINTS • Postmortem MR quantification is feasible for soft tissue discrimination and characterization • Temperature dependence of the T1 values challenges the MR quantification approach • The results provide the basis for computer-aided postmortem MRI diagnosis • Diagnostic criteria may also be applied for living patients.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Grand Canonical Monte Carlo simulations are used to reproduce the N₂/CO ratio ranging between 1.7 x 10⁻³ and 1.6 x 10⁻² observed in situ in the Jupiter-family comet 67 P/Churyumov-Gerasimenko (67 P) by the ROSINA mass spectrometer on board the Rosetta spacecraft. By assuming that this body has been agglomerated from clathrates in the protosolar nebula (PSN), simulations are developed using elaborated interatomic potentials for investigating the temperature dependence of the trapping within a multiple-guest clathrate formed from a gas mixture of CO and N₂ in proportions corresponding to those expected for the PSN. By assuming that 67 P agglomerated from clathrates, our calculations suggest the cometary grains must have been formed at temperatures ranging between ~ 31.8 and 69.9 K in the PSN to match the N₂/CO ratio measured by the ROSINA mass spectrometer. The presence of clathrates in Jupiter-family comets could then explain the potential N₂ depletion (factor of up to ~ 87 compared to the protosolar value) measured in 67 P/Churyumov-Gerasimenko.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The freezing behavior of water confined in compacted charged and uncharged clays (montmorillonite in Na-and Ca-forms, illite in Na-and Ca-forms, kaolinite and pyrophyllite) was investigated by neutron scattering. Firstly, the amount of frozen (immobile) water was measured as a function of temperature at the IN16 backscattering spectrometer, Institute Laue-Langevin (ILL). Water in uncharged, partly hydrophobic (kaolinite) and fully hydrophobic (pyrophyllite) clays exhibited a similar freezing and melting behavior to that of bulk water. In contrast, water in charged clays which are hydrophilic could be significantly supercooled. To observe the water dynamics in these clays, further experiments were performed using quasielastic neutron scattering. At temperatures of 250, 260 and 270 K the diffusive motion of water could still be observed, but with a strong reduction in the water mobility as compared with the values obtained above 273 K. The diffusion coefficients followed a non-Arrhenius temperature dependence well described by the Vogel-Fulcher-Tammann and the fractional power relations. The fits revealed that Na-and Ca-montmorillonite and Ca-illite have similar Vogel-Fulcher-Tammann temperatures (T-VFT, often referred to as the glass transition temperature) of similar to 120 K and similar temperatures at which the water undergoes the 'strong-fragile' transition, T-s similar to 210 K. On the other hand, Na-illite had significantly larger values of T-VFT similar to 180 K and T-s similar to 240 K. Surprisingly, Ca-illite has a similar freezing behavior of water to that of montmorillonites, even though it has a rather different structure. We attribute this to the stronger hydration of Ca ions as compared with the Na ions occurring in the illite clays.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Whole Atmosphere Community Climate Model (WACCM) is utilised to study the daily ozone cycle and underlying photochemical and dynamical processes. The analysis is focused on the daily ozone cycle in the middle stratosphere at 5 hPa where satellite-based trend estimates of stratospheric ozone are most biased by diurnal sampling effects and drifting satellite orbits. The simulated ozone cycle shows a minimum after sunrise and a maximum in the late afternoon. Further, a seasonal variation of the daily ozone cycle in the stratosphere was found. Depending on season and latitude, the peak-to-valley difference of the daily ozone cycle varies mostly between 3 and 5% (0.4 ppmv) with respect to the midnight ozone volume mixing ratio. The maximal variation of 15% (0.8 ppmv) is found at the polar circle in summer. The global pattern of the strength of the daily ozone cycle is mainly governed by the solar zenith angle and the sunshine duration. In addition, we find synoptic-scale variations in the strength of the daily ozone cycle. These variations are often anti-correlated to regional temperature anomalies and are due to the temperature dependence of the rate coefficients k2 and k3 of the Chapman cycle reactions. Further, the NOx catalytic cycle counteracts the accumulation of ozone during daytime and leads to an anti-correlation between anomalies in NOx and the strength of the daily ozone cycle. Similarly, ozone recombines with atomic oxygen which leads to an anti-correlation between anomalies in ozone abundance and the strength of the daily ozone cycle. At higher latitudes, an increase of the westerly (easterly) wind cause a decrease (increase) in the sunshine duration of an air parcel leading to a weaker (stronger) daily ozone cycle.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The behavior of bottomonium state correlators at non-zero temperature, 140.4(β = 6.664) ≤ T ≤ 221(β = 7.280) (MeV), where the transition temperature is 154(9) (MeV), is studied, using lattice NRQCD on 48³ ×12 HotQCD HiSQ action configurations with light dynamical Nf = 2+1 (mu,s/ms = 0.05) staggered quarks. In order to understand finite temperature effects on quarkonium states, zero temperature behavior of bottomonium correlators is compared based on 32⁴ (β = 6.664,6.800 and 6.950) and 48³ ×64 (β = 7.280) lattices. We find that temperature effects on S-wave bottomoniumstates are small but P-wave bottomoniumstates show a noticeable temperature dependence above the transition temperature.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND Mutations in the SCN9A gene cause chronic pain and pain insensitivity syndromes. We aimed to study clinical, genetic, and electrophysiological features of paroxysmal extreme pain disorder (PEPD) caused by a novel SCN9A mutation. METHODS Description of a 4-generation family suffering from PEPD with clinical, genetic and electrophysiological studies including patch clamp experiments assessing response to drug and temperature. RESULTS The family was clinically comparable to those reported previously with the exception of a favorable effect of cold exposure and a lack of drug efficacy including with carbamazepine, a proposed treatment for PEPD. A novel p.L1612P mutation in the Nav1.7 voltage-gated sodium channel was found in the four affected family members tested. Electrophysiologically the mutation substantially depolarized the steady-state inactivation curve (V1/2 from -61.8 ± 4.5 mV to -30.9 ± 2.2 mV, n = 4 and 7, P < 0.001), significantly increased ramp current (from 1.8% to 3.4%, n = 10 and 12) and shortened recovery from inactivation (from 7.2 ± 5.6 ms to 2.2 ± 1.5 ms, n = 11 and 10). However, there was no persistent current. Cold exposure reduced peak current and prolonged recovery from inactivation in wild-type and mutated channels. Amitriptyline only slightly corrected the steady-state inactivation shift of the mutated channel, which is consistent with the lack of clinical benefit. CONCLUSIONS The novel p.L1612P Nav1.7 mutation expands the PEPD spectrum with a unique combination of clinical symptoms and electrophysiological properties. Symptoms are partially responsive to temperature but not to drug therapy. In vitro trials of sodium channel blockers or temperature dependence might help predict treatment efficacy in PEPD.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this article, we present a new microscopic theoretical approach to the description of spin crossover in molecular crystals. The spin crossover crystals under consideration are composed of molecular fragments formed by the spin-crossover metal ion and its nearest ligand surrounding and exhibiting well defined localized (molecular) vibrations. As distinguished from the previous models of this phenomenon, the developed approach takes into account the interaction of spin-crossover ions not only with the phonons but also a strong coupling of the electronic shells with molecular modes. This leads to an effective coupling of the local modes with phonons which is shown to be responsible for the cooperative spin transition accompanied by the structural reorganization. The transition is characterized by the two order parameters representing the mean values of the products of electronic diagonal matrices and the coordinates of the local modes for the high- and low-spin states of the spin crossover complex. Finally, we demonstrate that the approach provides a reasonable explanation of the observed spin transition in the [Fe(ptz)6](BF4)2 crystal. The theory well reproduces the observed abrupt low-spin → high-spin transition and the temperature dependence of the high-spin fraction in a wide temperature range as well as the pronounced hysteresis loop. At the same time within the limiting approximations adopted in the developed model, the evaluated high-spin fraction vs. T shows that the cooperative spin-lattice transition proves to be incomplete in the sense that the high-spin fraction does not reach its maximum value at high temperature.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Rutile (TiO2) is an important host phase for high field strength elements (HFSE) such as Nb in metamorphic and subduction zone environments. The observed depletion of Nb in arc rocks is often explained by the hypothesis that rutile sequesters HFSE in the subducted slab and overlying sediment, and is chemically inert with respect to aqueous fluids evolved during prograde metamorphism in the forearc to subarc environment. However, field observations of exhumed terranes, and experimental studies, indicate that HFSE may be soluble in complex aqueous fluids at high pressure (i.e., >0.5 GPa) and moderate to high temperature (i.e., >300 degrees C). In this study, we investigated experimentally the mobility of Nb in NaCl- and NaF-bearing aqueous fluids in equilibrium with Nb-bearing rutile at pressure-temperature conditions applicable to fluid evolution in arc environments. Niobium concentrations in aqueous fluid at rutile saturation were measured directly by using a hydrothermal diamond-anvil cell (HDAC) and synchrotron X-ray fluorescence (SXRF) at 2.1 to 6.5 GPa and 300-500 degrees C, and indirectly by performing mass loss experiments in a piston-cylinder (PC) apparatus at similar to 1 GPa and 700-800 degrees C. The concentration of Nb in a 10 wt% NaCl aqueous fluid increases from 6 to 11 mu g/g as temperature increases from 300 to 500 degrees C, over a pressure range from 2.1 to 2.8 GPa, consistent with a positive temperature dependence. The concentration of Nb in a 20 wt% NaCl aqueous fluid varies from 55 to 150 mu g/g at 300 to 500 degrees C, over a pressure range from 1.8 to 6.4 GPa; however, there is no discernible temperature or pressure dependence. The Nb concentration in a 4 wt% NaF-bearing aqueous fluid increases from 180 to 910 mu g/g as temperature increases from 300 to 500 degrees C over the pressure range 2.1 to 6.5 GPa. The data for the F-bearing fluid indicate that the Nb content of the fluid exhibits a dependence on temperature between 300 and 500 degrees C at >= 2 GPa, but there is no observed dependence on pressure. Together, the data demonstrate that the hydrothermal mobility of Nb is strongly controlled by the composition of the fluid, consistent with published data for Ti. At all experimental conditions, however, the concentration of Nb in the fluid is always lower than coexisting rutile, consistent with a role for rutile in moderating the Nb budget of arc rocks.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

It is well known that gases adsorb on many surfaces, in particular metal surfaces. There are two main forms responsible for these effects (i) physisorption and (ii) chemisorption. Physisorption is associated with lower binding energies in the order of 1–10 kJ mol−¹, compared to chemisorption which ranges from 100 to 1000 kJ mol−¹. Furthermore, chemisorption only forms monolayers, contrasting physisorption that can form multilayer adsorption. The reverse process is called desorption and follows similar mathematical laws; however, it can be influenced by hysteresis effects. In the present experiment, we investigated the adsorption/desorption phenomena on three steel and three aluminium cylinders containing compressed air in our laboratory and under controlled conditions in a climate chamber, respectively. Our observations from completely decanting one steel and two aluminium cylinders are in agreement with the pressure dependence of physisorption for CO₂, CH₄, and H₂O. The CO₂ results for both cylinder types are in excellent agreement with the pressure dependence of a monolayer adsorption model. However, mole fraction changes due to adsorption on aluminium (< 0.05 and 0 ppm for CO₂ and H₂O) were significantly lower than on steel (< 0.41 ppm and about < 2.5 ppm, respectively). The CO₂ amount adsorbed (5.8 × 1019 CO₂ molecules) corresponds to about the fivefold monolayer adsorption, indicating that the effective surface exposed for adsorption is significantly larger than the geometric surface area. Adsorption/desorption effects were minimal for CH₄ and for CO but require further attention since they were only studied on one aluminium cylinder with a very low mole fraction. In the climate chamber, the cylinders were exposed to temperatures between −10 and +50 °C to determine the corresponding temperature coefficients of adsorption. Again, we found distinctly different values for CO₂, ranging from 0.0014 to 0.0184 ppm °C−¹ for steel cylinders and −0.0002 to −0.0003 ppm °C−¹ for aluminium cylinders. The reversed temperature dependence for aluminium cylinders points to significantly lower desorption energies than for steel cylinders and due to the small values, they might at least partly be influenced by temperature, permeation from/to sealing materials, and gas-consumption-induced pressure changes. Temperature coefficients for CH₄, CO, and H₂O adsorption were, within their error bands, insignificant. These results do indicate the need for careful selection and usage of gas cylinders for high-precision calibration purposes such as requested in trace gas applications.