18 resultados para Temperature Factors
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Clinical trials have reported statistically significant and clinically relevant effects of homeopathic preparations. We applied ultraviolet (UV) spectroscopy to investigate the physical properties of homeopathic preparations and to contribute to an understanding of the not-yet-identified mode of action. In previous investigations, homeopathic preparations had significantly lower UV light transmissions than controls. The aim of this study was to explore the possible effects of external factors (UV light and temperature) on the homeopathic preparations. Homeopathic centesimal (c) dilutions, 1c to 30c, of copper sulfate (CuSO(4)), decimal dilutions of sulfur (S(8)), 1x to 30x, and controls (succussed potentization medium) were prepared, randomized, and blinded. UV transmission was measured at six different time points after preparation (from 4 to 256 days). In addition, one series of samples was exposed to UV light of a sterilization lamp for 12 h, one was incubated at 37 degrees Celsius for 24 h, and one was heated to 90 degrees Celsius for 15 min. UV light transmission values from 190 or 220 nm to 340 nm were measured several times and averaged. After each exposure, UV transmission of the homeopathic preparations of CuSO(4) was significantly reduced compared to the controls, particularly after heating to 37 degrees Celsius. Overall, the nonexposed CuSO(4) preparations did not show significantly lower UV transmission compared to controls; however, the pooled subgroup of measurements at days 26, 33, and 110 yielded significant differences. UV light transmission for S(8) preparations did not show any differences compared to controls. Our conclusion is that exposure to external factors, incubation at 37 degrees Celsius in particular, increases the difference in light transmission of homeopathic CuSO(4) preparations compared to controls.
Resumo:
[1] Instrumental temperature series are often affected by artificial breaks (“break points”) due to (e.g.,) changes in station location, land-use, or instrumentation. The Swiss climate observation network offers a high number and density of stations, many long and relatively complete daily to sub-daily temperature series, and well-documented station histories (i.e., metadata). However, for many climate observation networks outside of Switzerland, detailed station histories are missing, incomplete, or inaccessible. To correct these records, the use of reliable statistical break detection methods is necessary. Here, we apply three statistical break detection methods to high-quality Swiss temperature series and use the available metadata to assess the methods. Due to the complex terrain in Switzerland, we are able to assess these methods under specific local conditions such as the Foehn or crest situations. We find that the temperature series of all stations are affected by artificial breaks (average = 1 break point / 48 years) with discrepancies in the abilities of the methods to detect breaks. However, by combining the three statistical methods, almost all of the detected break points are confirmed by metadata. In most cases, these break points are ascribed to a combination of factors in the station history.
Resumo:
Using results from four coupled global carbon cycle-climate models combined with in situ observations, we estimate the effects of future global warming and ocean acidification on potential habitats for tropical/subtropical and temperate coral communities in the seas around Japan. The suitability of coral habitats is classified on the basis of the currently observed regional ranges for temperature and saturation states with regard to aragonite (Ωarag). We find that, under the "business as usual" SRES A2 scenario, coral habitats are projected to expand northward by several hundred kilometers by the end of this century. At the same time, coral habitats are projected to become sandwiched between regions where the frequency of coral bleaching will increase, and regions where Ωarag will become too low to support sufficiently high calcification rates. As a result, the habitat suitable for tropical/subtropical corals around Japan may be reduced by half by the 2020s to 2030s, and is projected to disappear by the 2030s to 2040s. The habitat suitable for the temperate coral communities is also projected to decrease, although at a less pronounced rate, due to the higher tolerance of temperate corals for low Ωarag. Our study has two important caveats: first, it does not consider the potential adaptation of the coral communities, which would permit them to colonize habitats that are outside their current range. Second, it also does not consider whether or not coral communities can migrate quickly enough to actually occupy newly emerging habitats. As such, our results serve as a baseline for the assessment of the future evolution of coral habitats, but the consideration of important biological and ecological factors and feedbacks will be required to make more accurate projections.
Resumo:
As a species of major interest for aquaculture, the sex determination system (SDS) of Nile tilapia, Oreochromis niloticus, has been widely investigated. In this species, sex determination is considered to be governed by the interactions between a complex system of genetic sex determination factors (GSD) and the influence of temperature (TSD) during a critical period. Previous studies were exclusively carried out on domestic stocks with the genetic and maintenance limitations associated. Given the wide distribution and adaptation potential of the Nile tilapia, we investigated under controlled conditions the sex determination system of natural populations adapted to three extreme thermal regimes: stable extreme environments in Ethiopia, either cold temperatures in a highland lake (Lake Koka), or warm temperatures in hydrothermal springs (Lake Metahara), and an environment with large seasonal variations in Ghana (Kpandu, Lake Volta). The sex ratio analysis was conducted on progenies reared under constant basal (27 degrees C) or high (36 degrees C) temperatures during the 30 days following yolk-sac resorption. Sex ratios of the progenies reared at standard temperature suggest that the three populations share a similar complex GSD system based on a predominant male heterogametic factor with additional influences of polymorphism at this locus and/or action of minor factors. The three populations presented a clear thermosensitivity of sex differentiation, with large variations in the intensity of response depending on the parents. This confirms the presence of genotype-environment interactions in TSD of Nile tilapia. Furthermore the existence of naturally sex-reversed individuals is strongly suggested in two populations (Kpandu and Koka). However, it was not possible here to infer if the sex-inversion resulted from minor genetic factors and/or environmental influences. The present study demonstrated for the first time the conservation of a complex SDS combining polymorphic GSD and TSD components in natural populations of Nile tilapia. We discuss the evolutionary implications of our findings and highlight the importance of field investigations of sex determination. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
A lack of quantitative high resolution paleoclimate data from the Southern Hemisphere limits the ability to examine current trends within the context of long-term natural climate variability. This study presents a temperature reconstruction for southern Tasmania based on analyses of a sediment core from Duckhole Lake (43.365°S, 146.875°E). The relationship between non-destructive whole core scanning reflectance spectroscopy measurements in the visible spectrum (380–730 nm) and the instrumental temperature record (ad 1911–2000) was used to develop a calibration-in-time reflectance spectroscopy-based temperature model. Results showed that a trough in reflectance from 650 to 700 nm, which represents chlorophyll and its derivatives, was significantly correlated to annual mean temperature. A calibration model was developed (R = 0.56, p auto < 0.05, root mean squared error of prediction (RMSEP) = 0.21°C, five-year filtered data, calibration period 1911–2000) and applied down-core to reconstruct annual mean temperatures in southern Tasmania over the last c. 950 years. This indicated that temperatures were initially cool c. ad 1050, but steadily increased until the late ad 1100s. After a brief cool period in the ad 1200s, temperatures again increased. Temperatures steadily decreased during the ad 1600s and remained relatively stable until the start of the 20th century when they rapidly decreased, before increasing from ad 1960s onwards. Comparisons with high resolution temperature records from western Tasmania, New Zealand and South America revealed some similarities, but also highlighted differences in temperature variability across the mid-latitudes of the Southern Hemisphere. These are likely due to a combination of factors including the spatial variability in climate between and within regions, and differences between records that document seasonal (i.e. warm season/late summer) versus annual temperature variability. This highlights the need for further records from the mid-latitudes of the Southern Hemisphere in order to constrain past natural spatial and seasonal/annual temperature variability in the region, and to accurately identify and attribute changes to natural variability and/or anthropogenic activities.
Resumo:
Understanding natural climate variability and its driving factors is crucial to assessing future climate change. Therefore, comparing proxy-based climate reconstructions with forcing factors as well as comparing these with paleoclimate model simulations is key to gaining insights into the relative roles of internal versus forced variability. A review of the state of modelling of the climate of the last millennium prior to the CMIP5–PMIP3 (Coupled Model Intercomparison Project Phase 5–Paleoclimate Modelling Intercomparison Project Phase 3) coordinated effort is presented and compared to the available temperature reconstructions. Simulations and reconstructions broadly agree on reproducing the major temperature changes and suggest an overall linear response to external forcing on multidecadal or longer timescales. Internal variability is found to have an important influence at hemispheric and global scales. The spatial distribution of simulated temperature changes during the transition from the Medieval Climate Anomaly to the Little Ice Age disagrees with that found in the reconstructions. Thus, either internal variability is a possible major player in shaping temperature changes through the millennium or the model simulations have problems realistically representing the response pattern to external forcing. A last millennium transient climate response (LMTCR) is defined to provide a quantitative framework for analysing the consistency between simulated and reconstructed climate. Beyond an overall agreement between simulated and reconstructed LMTCR ranges, this analysis is able to single out specific discrepancies between some reconstructions and the ensemble of simulations. The disagreement is found in the cases where the reconstructions show reduced covariability with external forcings or when they present high rates of temperature change.
Resumo:
This review deals with the complex sex determining system of Nile tilapia, Oreochromis niloticus, governed by the interactions between a genetic determination and the influence of temperature, shown in both domestic and wild populations. Naturally sex reversed individuals are strongly suggested in two wild populations. This can be due to the masculinising temperatures which some fry encounter during their sex differentiation period when they colonise shallow waters, and/or to the influence of minor genetic factors. Differences regarding a) thermal responsiveness of sex ratios between and within Nile tilapia populations, b) maternal and paternal effects on temperature dependent sex ratios and c) nearly identical results in offspring of repeated matings, demonstrate that thermosensitivity is under genetic control. Selection experiments to increase the thermosensitivity revealed high responses in the high and low sensitive lines. The high-line showed ~ 90% males after 2 generations of selection whereas the weakly sensitive line had 54% males. This is the first evidence that a surplus of males in temperature treated groups can be selected as a quantitative trait. Expression profiles of several genes (Cyp19a, Foxl2, Amh, Sox9a,b) from the gonad and brain were analysed to define temperature action on the sex determining/differentiating cascade in tilapia. The coexistence of GSD and TSD is discussed.
Resumo:
The causes of a greening trend detected in the Arctic using the normalized difference vegetation index (NDVI) are still poorly understood. Changes in NDVI are a result of multiple ecological and social factors that affect tundra net primary productivity. Here we use a 25 year time series of AVHRR-derived NDVI data (AVHRR: advanced very high resolution radiometer), climate analysis, a global geographic information database and ground-based studies to examine the spatial and temporal patterns of vegetation greenness on the Yamal Peninsula, Russia. We assess the effects of climate change, gas-field development, reindeer grazing and permafrost degradation. In contrast to the case for Arctic North America, there has not been a significant trend in summer temperature or NDVI, and much of the pattern of NDVI in this region is due to disturbances. There has been a 37% change in early-summer coastal sea-ice concentration, a 4% increase in summer land temperatures and a 7% change in the average time-integrated NDVI over the length of the satellite observations. Gas-field infrastructure is not currently extensive enough to affect regional NDVI patterns. The effect of reindeer is difficult to quantitatively assess because of the lack of control areas where reindeer are excluded. Many of the greenest landscapes on the Yamal are associated with landslides and drainage networks that have resulted from ongoing rapid permafrost degradation. A warming climate and enhanced winter snow are likely to exacerbate positive feedbacks between climate and permafrost thawing. We present a diagram that summarizes the social and ecological factors that influence Arctic NDVI. The NDVI should be viewed as a powerful monitoring tool that integrates the cumulative effect of a multitude of factors affecting Arctic land-cover change.
Resumo:
Water stable isotope ratios and net snow accumulation in ice cores are commonly interpreted as temperature or precipitation proxies. However, only in a few cases has a direct calibration with instrumental data been attempted. In this study we took advantage of the dense network of observations in the European Alpine region to rigorously test the relationship of the annual and seasonal resolved proxy data from two highly resolved ice cores with local temperature and precipitation. We focused on the time period 1961–2001 with the highest amount and quality of meteorological data and the minimal uncertainty in ice core dating (±1 year). The two ice cores were retrieved from the Fiescherhorn glacier (northern Alps, 3900 m a.s.l.), and Grenzgletscher (southern Alps, 4200 m a.s.l.). A parallel core from the Fiescherhorn glacier allowed assessing the reproducibility of the ice core proxy data. Due to the orographic barrier, the two flanks of the Alpine chain are affected by distinct patterns of precipitation. The different location of the two glaciers therefore offers a unique opportunity to test whether such a specific setting is reflected in the proxy data. On a seasonal scale a high fraction of δ18O variability was explained by the seasonal cycle of temperature (~60% for the ice cores, ~70% for the nearby stations of the Global Network of Isotopes in Precipitation – GNIP). When the seasonality is removed, the correlations decrease for all sites, indicating that factors other than temperature such as changing moisture sources and/or precipitation regimes affect the isotopic signal on this timescale. Post-depositional phenomena may additionally modify the ice core data. On an annual scale, the δ18O/temperature relationship was significant at the Fiescherhorn, whereas for Grenzgletscher this was the case only when weighting the temperature with precipitation. In both cases the fraction of interannual temperature variability explained was ~20%, comparable to the values obtained from the GNIP stations data. Consistently with previous studies, we found an altitude effect for the δ18O of −0.17‰/100 m for an extended elevation range combining data of the two ice core sites and four GNIP stations. Significant correlations between net accumulation and precipitation were observed for Grenzgletscher during the entire period of investigation, whereas for Fiescherhorn this was the case only for the less recent period (1961–1977). Local phenomena, probably related to wind, seem to partly disturb the Fiescherhorn accumulation record. Spatial correlation analysis shows the two glaciers to be influenced by different precipitation regimes, with the Grenzgletscher reflecting the characteristic precipitation regime south of the Alps and the Fiescherhorn accumulation showing a pattern more closely linked to northern Alpine stations.
Resumo:
Background and aims Fine root decomposition contributes significantly to element cycling in terrestrial ecosystems. However, studies on root decomposition rates and on the factors that potentially influence them are fewer than those on leaf litter decomposition. To study the effects of region and land use intensity on fine root decomposition, we established a large scale study in three German regions with different climate regimes and soil properties. Methods In 150 forest and 150 grassland sites we deployed litterbags (100 μm mesh size) with standardized litter consisting of fine roots from European beech in forests and from a lowland mesophilous hay meadow in grasslands. In the central study region, we compared decomposition rates of this standardized litter with root litter collected on-site to separate the effect of litter quality from environmental factors. Results Standardized herbaceous roots in grassland soils decomposed on average significantly faster (24 ± 6 % mass loss after 12 months, mean ± SD) than beech roots in forest soils (12 ± 4 %; p < 0.001). Fine root decomposition varied among the three study regions. Land use intensity, in particular N addition, decreased fine root decomposition in grasslands. The initial lignin:N ratio explained 15 % of the variance in grasslands and 11 % in forests. Soil moisture, soil temperature, and C:N ratios of soils together explained 34 % of the variance of the fine root mass loss in grasslands, and 24 % in forests. Conclusions Grasslands, which have higher fine root biomass and root turnover compared to forests, also have higher rates of root decomposition. Our results further show that at the regional scale fine root decomposition is influenced by environmental variables such as soil moisture, soil temperature and soil nutrient content. Additional variation is explained by root litter quality.
Resumo:
Climate models predict more frequent and more severe extreme events (e.g., heat waves, extended drought periods, flooding) in many regions for the next decades. The impact of adverse environmental conditions on crop plants is ecologically and economically relevant. This review is focused on drought and heat effects on physiological status and productivity of agronomically important plants. Stomatal opening represents an important regulatory mechanism during drought and heat stress since it influences simultaneously water loss via transpiration and CO2 diffusion into the leaf apoplast which further is utilized in photosynthesis. Along with the reversible short-term control of stomatal opening, stomata and leaf epidermis may produce waxy deposits and irreversibly down-regulate the stomatal conductance and non-stomatal transpiration. As a consequence photosynthesis will be negatively affected. Rubisco activase—a key enzyme in keeping the Calvin cycle functional—is heat-sensitive and may become a limiting factor at elevated temperature. The accumulated reactive oxygen species (ROS) during stress represent an additional challenge under unfavorable conditions. Drought and heat cause accumulation of free amino acids which are partially converted into compatible solutes such as proline. This is accompanied by lower rates of both nitrate reduction and de novo amino acid biosynthesis. Protective proteins (e.g., dehydrins, chaperones, antioxidant enzymes or the key enzyme for proline biosynthesis) play an important role in leaves and may be present at higher levels under water deprivation or high temperatures. On the whole plant level, effects on long-distance translocation of solutes via xylem and phloem and on leaf senescence (e.g., anticipated, accelerated or delayed senescence) are important. The factors mentioned above are relevant for the overall performance of crops under drought and heat and must be considered for genotype selection and breeding programs.
Resumo:
Understanding how organisms control soil water dynamics is a major research goal in dryland ecology. Although previous studies have mostly focused on the role of vascular plants on the hydrological cycle of drylands, recent studies highlight the importance of biological soil crusts formed by lichens, mosses, and cyanobacteria (biocrusts) as a major player in this cycle. We used data from a 6.5-year study to evaluate how multiple abiotic (rainfall characteristics, temperature, and initial soil moisture) and biotic (vascular plants and biocrusts) factors interact to determine wetting and drying processes in a semi-arid grassland from Central Spain. We found that the shrub Retama sphaerocarpa and biocrusts with medium cover (25–75%) enhanced water gain and slowed drying compared with bare ground areas (BSCl). Well-developed biocrusts (>75% cover) gained more water, but lost it faster than BSCl microsites. The grass Stipa tenacissima reduced water gain due to rainfall interception, but increased soil moisture retention compared to BSCl microsites. Biotic modulation of water dynamics was the result of different mechanisms acting in tandem and often in opposite directions. For instance, biocrusts promoted an exponential behavior during the first stage of the drying curve, but reduced the importance of soil characteristics that accentuate drying rates. Biocrust-dominated microsites gained a similar amount of water than vascular plants, although they lost it faster than vascular plants during dry periods. Our results emphasize the importance of biocrusts for water dynamics in drylands, and illustrate the potential mechanisms behind their effects. They will help to further advance theoretical and modeling efforts on the hydrology of drylands and their response to ongoing climate change.
Resumo:
Glacier fluctuations are a key indicator of changing climate. Their reconstruction beyond historical times unravels glacier variability and its forcing factors on long time scales, which can considerably improve our understanding of the climate–glacier relationship. Here, we present a 2250-year-long reconstruction of particle-mass accumulation rates recorded in the lacustrine sediments of Lake Trüebsee (Central Swiss Alps) that are directly related to glacier extent, thus reflecting a continuous record of fluctuations of the upstream-located Titlis Glacier. Mass accumulation rate values show strong centennial to multi-centennial fluctuations and reveal 12 well-pronounced periods of enhanced values corresponding to times of maximum extent of the neighboring Lower Grindelwald Glacier. This result supports previous studies of proglacial lake sediments that documented high mass accumulation rate values during glacier advances. The strong variability in the Lake Trüebsee mass accumulation rate record thus represents a highly sensitive paleoclimatic archive, which mirrors rapid and pronounced feedbacks of Titlis Glacier to climatic changes over the past 2250years. The comparison of our data with independent paleo-temperature reconstructions from tree rings suggests that variations in mean summer temperature were the primary driving factor of fluctuations of Titlis Glacier. Also, advances of Titlis Glacier occurred during the grand solar minima (Dalton, Maunder, Spörer, Wolf) of the last millennium. This relation of glacier extent with summer temperature reveals strong evidence that the mass balance of this Alpine glacier is primarily controlled by the intensity of glacier melting during summer.
Resumo:
Enrichment of 13C in SOM with soil depth is related to interacting processes influenced by temperature and precipitation. Our objectives were to derive climate effects on patterns of vertical δ13C values of soil organic matter (SOM) while minimizing the effect of confounding variables. We investigated vertical changes in δ13C values of SOM in 1-cm depth intervals in silvicultural mature beech (Fagus sylvatica L.) forest ecosystems in northern Rhineland-Palatinate across gradients of MAT (7.9 to 9.7 °C mean annual temperature) and MAP (607 to 1085 mm mean annual precipitation) in winter 2011. Forest stands (n = 10) were chosen based on data sets provided by the Rhineland-Palatinate Forest Administration so that variations in these gradients occurred while other environmental factors like physico-chemical soil properties, tree species, stand age, exposition and precipitation (for the temperature gradient) or temperature (for the precipitation gradient) did not differ among study sites. From litter down to the mineral soil at 10 cm depth, soil organic carbon (SOC) content decreased (47.5 ± SE 0.1% to 2.5 ± 0.1%) while the δ13C values increased (− 29.4 ± 0.1‰ to − 26.1 ± 0.1‰). Litter of sites under higher MAP/lower MAT had lower δ13C values which was in line with literature data on climate driven plant physiological process. To compare the dimension of the vertical 13C enrichment, δ13C values were regressed linearly against log-transformed carbon contents yielding absolute values of these slopes (beta). Beta values ranged between 0.6 and 4.5 (range of r from − 0.7 to − 1.0; p < 0.01). Due to an assumed decay continuum and similar variations of δ13C values in litter and in 10 cm depth, we conclude that effects on isotope composition in the Oi layer continue vertically and therefore, δ13C values in litter do not solely control beta values. Beta values decreased with increasing MAT (r = − 0.83; p < 0.05). Reduced soil moisture and therefore both, reduced microbial activity and reduced downward transport of microbial cycled DOM (=13C enriched) might be responsible for less pronounced δ13C depth profiles in case of high temperatures. Greater C:N ratios (lower degradability) of the litter under higher temperatures likely contributed to these depth trends. Beta values increased with increasing MAP (r = 0.73; p < 0.05). We found decreasing C:N ratios in the mineral soil that possibly indicates higher decomposition under higher precipitation. Exclusion of the organic layers from linear regressions indicated a stronger impact of MAP on the development of δ13C depth profiles. Our results confirm temperature and precipitation effects on δ13C depth profiles and indicate stronger 13C enrichment under lower MAT/higher MAP. Therefore, time series of vertical δ13C depth profiles might provide insights into climate change effects.
Resumo:
This study explores whether the high variability of vascular plant diversity among alpine plant communities can be explained by stress and/or disturbance intensities. Species numbers of 14 alpine plant communities were sampled in the Swiss Alps. To quantify the intensity of 13 stress and 6 disturbance factors potentially controlling plant life in these communities, a survey was conducted by asking numerous specialists in alpine vegetation to assess the importance of the different factors for each community. The estimated values were combined in stress- and disturbance-indices which were compared with diversity according to the Intermediate Stress Hypothesis, the Intermediate Disturbance Hypothesis, and the Dynamic Equilibrium Model, respectively. Each of these theories explained a part of the variability in the species richness, but only the Dynamic Equilibrium Model provided a complete and consistent explanation. The last model suggests that community species richness within the alpine life zone is generally controlled by stress intensity. Disturbance and competition seem to play a secondary role by fine-tuning diversity in specific communities. As diversity is primarily limited by stress, a moderation of temperature-related stress factors, as a result of global warming, may cause a shift of the equilibrium between stress, disturbance, and competition in alpine ecosystems.