31 resultados para Technological physics

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Modeling of tumor growth has been performed according to various approaches addressing different biocomplexity levels and spatiotemporal scales. Mathematical treatments range from partial differential equation based diffusion models to rule-based cellular level simulators, aiming at both improving our quantitative understanding of the underlying biological processes and, in the mid- and long term, constructing reliable multi-scale predictive platforms to support patient-individualized treatment planning and optimization. The aim of this paper is to establish a multi-scale and multi-physics approach to tumor modeling taking into account both the cellular and the macroscopic mechanical level. Therefore, an already developed biomodel of clinical tumor growth and response to treatment is self-consistently coupled with a biomechanical model. Results are presented for the free growth case of the imageable component of an initially point-like glioblastoma multiforme tumor. The composite model leads to significant tumor shape corrections that are achieved through the utilization of environmental pressure information and the application of biomechanical principles. Using the ratio of smallest to largest moment of inertia of the tumor material to quantify the effect of our coupled approach, we have found a tumor shape correction of 20\% by coupling biomechanics to the cellular simulator as compared to a cellular simulation without preferred growth directions. We conclude that the integration of the two models provides additional morphological insight into realistic tumor growth behavior. Therefore, it might be used for the development of an advanced oncosimulator focusing on tumor types for which morphology plays an important role in surgical and/or radio-therapeutic treatment planning.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article is aimed at addressing the current state of the art in epidemiology, pathophysiology, diagnostic procedures and treatment options for appropriate management of obstructive sleep apnea (OSA) in cardiovascular (particularly hypertensive) patients, as well as for the management of cardiovascular diseases (particularly arterial hypertension) in OSA patients. The present document is the result of the work done by a panel of experts participating in the European Union COST (COoperation in Scientific and Technological research) ACTION B26 on OSA, with the endorsement of the European Respiratory Society (ERS) and the European Society of Hypertension (ESH). These recommendations are particularly aimed at reminding cardiovascular experts to consider the occurrence of sleep-related breathing disorders in patients with high blood pressure. They are at the same time aimed at reminding respiration experts to consider the occurrence of hypertension in patients with respiratory problems at night.