4 resultados para Taxonomic composition

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Palynology provides the opportunity to make inferences on changes in diversity of terrestrial vegetation over long time scales. The often coarse taxonomic level achievable in pollen analysis, differences in pollen production and dispersal, and the lack of pollen source boundaries hamper the application of diversity indices to palynology. Palynological richness, the number of pollen types at a constant pollen count, is the most robust and widely used diversity indicator for pollen data. However, this index is also influenced by the abundance distribution of pollen types in sediments. In particular, where the index is calculated by rarefaction analysis, information on taxonomic richness at low abundance may be lost. Here we explore information that can be extracted from the accumulation of taxa over consecutive samples. The log-transformed taxa accumulation curve can be broken up into linear sections with different slope and intersect parameters, describing the accumulation of new taxa within the section. The breaking points may indicate changes in the species pool or in the abundance of high versus low pollen producers. Testing this concept on three pollen diagrams from different landscapes, we find that the break points in the taxa accumulation curves provide convenient zones for identifying changes in richness and evenness. The linear regressions over consecutive samples can be used to inter- and extrapolate to low or extremely high pollen counts, indicating evenness and richness in taxonomic composition within these zones. An evenness indicator, based on the rank-order-abundance is used to assist in the evaluation of the results and the interpretation of the fossil records. Two central European pollen diagrams show major changes in the taxa accumulation curves for the Lateglacial period and the time of human induced land-use changes, while they do not indicate strong changes in the species pool with the onset of the Holocene. In contrast, a central Swedish pollen diagram shows comparatively little change, but high richness during the early Holocene forest establishment. Evenness and palynological richness are related for most periods in the three diagrams, however, sections before forest establishment and after forest clearance show high evenness, which is not necessarily accompanied by high palynological richness, encouraging efforts to separate the two.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Want a glimpse at past vegetation? Studying pollen and other plant remains, which are preserved for example in lake sediments or mires for thousands of years, allows us to document regional occurrences of plant species over radiocarbon-dated time series. Such vegetation reconstructions derived from optical analyses of fossil samples are inherently incomplete because they only comprise taxa that contribute sufficient amounts of pollen, spores, macrofossil or other evidences. To complement optical analyses for paleoecological inference, molecular markers applied to ancient DNA (aDNA) may help in disclosing information hitherto inaccessible to biologists. Parducci et al. (2013) targeted aDNA from sediment cores of two lakes in the Scandes Mountains with generic primers in a meta-barcoding approach. When compared to palynological records from the same cores, respective taxon lists show remarkable differences in their compositions, but also in quantitative representation and in taxonomic resolution similar to a previous study (Jørgensen et al. 2012). While not free of assumptions that need critical and robust testing, notably the question of possible contamination, this study provides thrilling prospects to improve our knowledge about past vegetation composition, but also other organismic groups, stored as a biological treasure in the ground.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aim Our aims were to compare the composition of testate amoeba (TA) communities from Santa Cruz Island, Galápagos Archipelago, which are likely in existence only as a result of anthropogenic habitat transformation, with similar naturally occurring communities from northern and southern continental peatlands. Additionally, we aimed at assessing the importance of niche-based and dispersal-based processes in determining community composition and taxonomic and functional diversity. Location The humid highlands of the central island of Santa Cruz, Galápagos Archipelago. Methods We survey the alpha, beta and gamma taxonomic and functional diversities of TA, and the changes in functional traits along a gradient of wet to dry habitats. We compare the TA community composition, abundance and frequency recorded in the insular peatlands with that recorded in continental peatlands of Northern and Southern Hemispheres. We use generalized linear models to determine how environmental conditions influence taxonomic and functional diversity as well as the mean values of functional traits within communities. We finally apply variance partitioning to assess the relative importance of niche- and dispersal-based processes in determining community composition. Results TA communities in Santa Cruz Island were different from their Northern Hemisphere and South American counterparts with most genera considered as characteristic for Northern Hemisphere and South American Sphagnum peatlands missing or very rare in the Galápagos. Functional traits were most correlated with elevation and site topography and alpha functional diversity to the type of material sampled and site topography. Community composition was more strongly correlated with spatial variables than with environmental ones. Main conclusions TA communities of the Sphagnum peatlands of Santa Cruz Island and the mechanisms shaping these communities contrast with Northern Hemisphere and South American peatlands. Soil moisture was not a strong predictor of community composition most likely because rainfall and clouds provide sufficient moisture. Dispersal limitation was more important than environmental filtering because of the isolation of the insular peatlands from continental ones and the young ecological history of these ecosystems.