6 resultados para Taxa de mortalidade
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Multilocus sequence analysis (MLSA) based on recN, rpoA and thdF genes was done on more than 30 species of the family Enterobacteriaceae with a focus on Cronobacter and the related genus Enterobacter. The sequences provide valuable data for phylogenetic, taxonomic and diagnostic purposes. Phylogenetic analysis showed that the genus Cronobacter forms a homogenous cluster related to recently described species of Enterobacter, but distant to other species of this genus. Combining sequence information on all three genes is highly representative for the species' %GC-content used as taxonomic marker. Sequence similarity of the three genes and even of recN alone can be used to extrapolate genetic similarities between species of Enterobacteriaceae. Finally, the rpoA gene sequence, which is the easiest one to determine, provides a powerful diagnostic tool to identify and differentiate species of this family. The comparative analysis gives important insights into the phylogeny and genetic relatedness of the family Enterobacteriaceae and will serve as a basis for further studies and clarifications on the taxonomy of this large and heterogeneous family.
Resumo:
Palynology provides the opportunity to make inferences on changes in diversity of terrestrial vegetation over long time scales. The often coarse taxonomic level achievable in pollen analysis, differences in pollen production and dispersal, and the lack of pollen source boundaries hamper the application of diversity indices to palynology. Palynological richness, the number of pollen types at a constant pollen count, is the most robust and widely used diversity indicator for pollen data. However, this index is also influenced by the abundance distribution of pollen types in sediments. In particular, where the index is calculated by rarefaction analysis, information on taxonomic richness at low abundance may be lost. Here we explore information that can be extracted from the accumulation of taxa over consecutive samples. The log-transformed taxa accumulation curve can be broken up into linear sections with different slope and intersect parameters, describing the accumulation of new taxa within the section. The breaking points may indicate changes in the species pool or in the abundance of high versus low pollen producers. Testing this concept on three pollen diagrams from different landscapes, we find that the break points in the taxa accumulation curves provide convenient zones for identifying changes in richness and evenness. The linear regressions over consecutive samples can be used to inter- and extrapolate to low or extremely high pollen counts, indicating evenness and richness in taxonomic composition within these zones. An evenness indicator, based on the rank-order-abundance is used to assist in the evaluation of the results and the interpretation of the fossil records. Two central European pollen diagrams show major changes in the taxa accumulation curves for the Lateglacial period and the time of human induced land-use changes, while they do not indicate strong changes in the species pool with the onset of the Holocene. In contrast, a central Swedish pollen diagram shows comparatively little change, but high richness during the early Holocene forest establishment. Evenness and palynological richness are related for most periods in the three diagrams, however, sections before forest establishment and after forest clearance show high evenness, which is not necessarily accompanied by high palynological richness, encouraging efforts to separate the two.
Resumo:
Land-use intensification is a key driver of biodiversity change. However, little is known about how it alters relationships between the diversities of different taxonomic groups, which are often correlated due to shared environmental drivers and trophic interactions. Using data from 150 grassland sites, we examined how land-use intensification (increased fertilization, higher livestock densities, and increased mowing frequency) altered correlations between the species richness of 15 plant, invertebrate, and vertebrate taxa. We found that 54% of pairwise correlations between taxonomic groups were significant and positive among all grasslands, while only one was negative. Higher land-use intensity substantially weakened these correlations (35% decrease in r and 43% fewer significant pairwise correlations at high intensity), a pattern which may emerge as a result of biodiversity declines and the breakdown of specialized relationships in these conditions. Nevertheless, some groups (Coleoptera, Heteroptera, Hymenoptera and Orthoptera) were consistently correlated with multidiversity, an aggregate measure of total biodiversity comprised of the standardized diversities of multiple taxa, at both high and low land-use intensity. The form of intensification was also important; increased fertilization and mowing frequency typically weakened plant–plant and plant–primary consumer correlations, whereas grazing intensification did not. This may reflect decreased habitat heterogeneity under mowing and fertilization and increased habitat heterogeneity under grazing. While these results urge caution in using certain taxonomic groups to monitor impacts of agricultural management on biodiversity, they also suggest that the diversities of some groups are reasonably robust indicators of total biodiversity across a range of conditions. Read More: http://www.esajournals.org/doi/10.1890/14-1307.1