26 resultados para TTT and CCT diagrams

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: There is an increasing demand for comprehensive forms of palliative cancer care, meeting physical as well as emotional, cognitive, spiritual and social needs. Therapy programs of anthroposophic hospitals are aimed at improving health and quality of life (QoL) at these levels. However, data on the influence of these programs on QoL of patients with advanced cancer are scarce. PATIENTS AND METHODS: 144 in-patients with advanced epithelial cancers were treated at the anthroposophic Lukas Klinik, Arlesheim, Switzerland. QoL was assessed upon admission, discharge and after 4 months, using 20 functional scales from the questionnaires EORTC QLQ-C30, HADS and SELT-M. Statistical testing was performed with the Wilcoxon signed rank test. At month 4, subjectively perceived benefits from anthroposophic medicine (AM) and conventional cancer therapy (CCT) were assessed by telephone. OBJECTIVE: The aim was to provide an account of global, physical, emotional, cognitive-spiritual and social QoL developments in advanced cancer patients, during and after in-patient AM treatment, and to investigate subjective benefits from AM and CCT. RESULTS: QoL improvements were observed in all 20 dimensions (12 significant). Compared to related studies, improvements were fairly high. At month 4, QoL scores had decreased but were still above baseline in all 20 dimensions. Both AM and CCT were perceived as beneficial. CONCLUSION: Our data provide evidence that in-patient therapy at an anthroposophic hospital can lead to significant QoL improvements, especially in emotional, but also global, physical, cognitive-spiritual and social aspects. Benefits of AM were experienced on the physical, emotional, cognitive- spiritual and social level. Benefits of CCT were tumor-focused.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

XMapTools is a MATLAB©-based graphical user interface program for electron microprobe X-ray image processing, which can be used to estimate the pressure–temperature conditions of crystallization of minerals in metamorphic rocks. This program (available online at http://www.xmaptools.com) provides a method to standardize raw electron microprobe data and includes functions to calculate the oxide weight percent compositions for various minerals. A set of external functions is provided to calculate structural formulae from the standardized analyses as well as to estimate pressure–temperature conditions of crystallization, using empirical and semi-empirical thermobarometers from the literature. Two graphical user interface modules, Chem2D and Triplot3D, are used to plot mineral compositions into binary and ternary diagrams. As an example, the software is used to study a high-pressure Himalayan eclogite sample from the Stak massif in Pakistan. The high-pressure paragenesis consisting of omphacite and garnet has been retrogressed to a symplectitic assemblage of amphibole, plagioclase and clinopyroxene. Mineral compositions corresponding to ~165,000 analyses yield estimates for the eclogitic pressure–temperature retrograde path from 25 kbar to 9 kbar. Corresponding pressure–temperature maps were plotted and used to interpret the link between the equilibrium conditions of crystallization and the symplectitic microstructures. This example illustrates the usefulness of XMapTools for studying variations of the chemical composition of minerals and for retrieving information on metamorphic conditions on a microscale, towards computation of continuous pressure–temperature-and relative time path in zoned metamorphic minerals not affected by post-crystallization diffusion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Past treelines can rarely be recorded by pollen percentages alone, but pollen concentration, pollen influx, and plant macrofossils (including stomata of conifers) are more reliable indicators. In addition, ancient forest soils above today's treeline may trace the maximum upper expansion of the forest since the last glaciation. Charcoal in such soil profiles may be radiocarbon dated. Our example from the Central Swiss Alps at the Alpe d'Essertse consists of a plant-macrofossil diagram and pollen diagrams of the pond Gouille Rion at 2343 m a.s.l. and a sequence of soil profiles from 1780 m to 2600 m a.s.l. The area around the pond was forested with LariJc decidua and Pinus cembra between 9500 and 3600 BP. After 4700 BP the forest became more open and Juniperus nana and Alnus viridis expanded (together with Picea abies in the subalpine forest). Between 1700 and 900 BP the Juniperus nana and Alnus viridis scrubs declined while meadows and pastures took over, so that the pond Gouille Rion was definitively above timber­ line. The highest Holocene treeline was at 2400 to 2450 m a.s.l. (i.e. 50 to 100 m higher than the uppermost single specimen of Pinus cembra today) between 9000 and 4700 BP, but it is not yet dated in more detail. The highest charcoal of Pinus cembra at 2380 m a.s.l. has a radiocarbon date of 6010 ± 70 BP. Around 6900 BP a strong climatic deterioration caused an opening of timberline forest. First indicators of anthropogenic influence occurred at 4700 BP, when the forest limit started to move down. The lowering of timberline after 4700 BP was probably due to combined effects of human and climatic impact.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Several conversion tables and formulas have been suggested to correct applanation intraocular pressure (IOP) for central corneal thickness (CCT). CCT is also thought to represent an independent glaucoma risk factor. In an attempt to integrate IOP and CCT into a unified risk factor and avoid uncertain correction for tonometric inaccuracy, a new pressure-to-cornea index (PCI) is proposed. METHODS: PCI (IOP/CCT(3)) was defined as the ratio between untreated IOP and CCT(3) in mm (ultrasound pachymetry). PCI distribution in 220 normal controls, 53 patients with normal-tension glaucoma (NTG), 76 with ocular hypertension (OHT), and 89 with primary open-angle glaucoma (POAG) was investigated. PCI's ability to discriminate between glaucoma (NTG+POAG) and non-glaucoma (controls+OHT) was compared with that of three published formulae for correcting IOP for CCT. Receiver operating characteristic (ROC) curves were built. RESULTS: Mean PCI values were: Controls 92.0 (SD 24.8), NTG 129.1 (SD 25.8), OHT 134.0 (SD 26.5), POAG 173.6 (SD 40.9). To minimise IOP bias, eyes within the same 2 mm Hg range between 16 and 29 mm Hg (16-17, 18-19, etc) were separately compared: control and NTG eyes as well as OHT and POAG eyes differed significantly. PCI demonstrated a larger area under the ROC curve (AUC) and significantly higher sensitivity at fixed 80% and 90% specificities compared with each of the correction formulas; optimum PCI cut-off value 133.8. CONCLUSIONS: A PCI range of 120-140 is proposed as the upper limit of "normality", 120 being the cut-off value for eyes with untreated pressures or=22 mm Hg. PCI may reflect individual susceptibility to a given IOP level, and thus represent a glaucoma risk factor. Longitudinal studies are needed to prove its prognostic value.

Relevância:

40.00% 40.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Overwhelming evidence shows the quality of reporting of randomised controlled trials (RCTs) is not optimal. Without transparent reporting, readers cannot judge the reliability and validity of trial findings nor extract information for systematic reviews. Recent methodological analyses indicate that inadequate reporting and design are associated with biased estimates of treatment effects. Such systematic error is seriously damaging to RCTs, which are considered the gold standard for evaluating interventions because of their ability to minimise or avoid bias. A group of scientists and editors developed the CONSORT (Consolidated Standards of Reporting Trials) statement to improve the quality of reporting of RCTs. It was first published in 1996 and updated in 2001. The statement consists of a checklist and flow diagram that authors can use for reporting an RCT. Many leading medical journals and major international editorial groups have endorsed the CONSORT statement. The statement facilitates critical appraisal and interpretation of RCTs. During the 2001 CONSORT revision, it became clear that explanation and elaboration of the principles underlying the CONSORT statement would help investigators and others to write or appraise trial reports. A CONSORT explanation and elaboration article was published in 2001 alongside the 2001 version of the CONSORT statement. After an expert meeting in January 2007, the CONSORT statement has been further revised and is published as the CONSORT 2010 Statement. This update improves the wording and clarity of the previous checklist and incorporates recommendations related to topics that have only recently received recognition, such as selective outcome reporting bias. This explanatory and elaboration document-intended to enhance the use, understanding, and dissemination of the CONSORT statement-has also been extensively revised. It presents the meaning and rationale for each new and updated checklist item providing examples of good reporting and, where possible, references to relevant empirical studies. Several examples of flow diagrams are included. The CONSORT 2010 Statement, this revised explanatory and elaboration document, and the associated website (www.consort-statement.org) should be helpful resources to improve reporting of randomised trials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Overwhelming evidence shows the quality of reporting of randomised controlled trials (RCTs) is not optimal. Without transparent reporting, readers cannot judge the reliability and validity of trial findings nor extract information for systematic reviews. Recent methodological analyses indicate that inadequate reporting and design are associated with biased estimates of treatment effects. Such systematic error is seriously damaging to RCTs, which are considered the gold standard for evaluating interventions because of their ability to minimise or avoid bias. A group of scientists and editors developed the CONSORT (Consolidated Standards of Reporting Trials) statement to improve the quality of reporting of RCTs. It was first published in 1996 and updated in 2001. The statement consists of a checklist and flow diagram that authors can use for reporting an RCT. Many leading medical journals and major international editorial groups have endorsed the CONSORT statement. The statement facilitates critical appraisal and interpretation of RCTs. During the 2001 CONSORT revision, it became clear that explanation and elaboration of the principles underlying the CONSORT statement would help investigators and others to write or appraise trial reports. A CONSORT explanation and elaboration article was published in 2001 alongside the 2001 version of the CONSORT statement. After an expert meeting in January 2007, the CONSORT statement has been further revised and is published as the CONSORT 2010 Statement. This update improves the wording and clarity of the previous checklist and incorporates recommendations related to topics that have only recently received recognition, such as selective outcome reporting bias. This explanatory and elaboration document-intended to enhance the use, understanding, and dissemination of the CONSORT statement-has also been extensively revised. It presents the meaning and rationale for each new and updated checklist item providing examples of good reporting and, where possible, references to relevant empirical studies. Several examples of flow diagrams are included. The CONSORT 2010 Statement, this revised explanatory and elaboration document, and the associated website (www.consort-statement.org) should be helpful resources to improve reporting of randomised trials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cranial CT (CCT) is the gold standard to rule out traumatic brain injury. The serum level of the protein S-100B has recently been proposed as promising marker of traumatic brain injury. We prospectively investigated whether it might be a reliable tool for CCT triage in mild brain injury at a peripheral trauma centre with limited CT resources.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bite mark analysis offers the opportunity to identify the biter based on the individual characteristics of the dentitions. Normally, the main focus is on analysing bite mark injuries on human bodies, but also, bite marks in food may play an important role in the forensic investigation of a crime. This study presents a comparison of simulated bite marks in different kinds of food with the dentitions of the presumed biter. Bite marks were produced by six adults in slices of buttered bread, apples, different kinds of Swiss chocolate and Swiss cheese. The time-lapse influence of the bite mark in food, under room temperature conditions, was also examined. For the documentation of the bite marks and the dentitions of the biters, 3D optical surface scanning technology was used. The comparison was performed using two different software packages: the ATOS modelling and analysing software and the 3D studio max animation software. The ATOS software enables an automatic computation of the deviation between the two meshes. In the present study, the bite marks and the dentitions were compared, as well as the meshes of each bite mark which were recorded in the different stages of time lapse. In the 3D studio max software, the act of biting was animated to compare the dentitions with the bite mark. The examined food recorded the individual characteristics of the dentitions very well. In all cases, the biter could be identified, and the dentitions of the other presumed biters could be excluded. The influence of the time lapse on the food depends on the kind of food and is shown on the diagrams. However, the identification of the biter could still be performed after a period of time, based on the recorded individual characteristics of the dentitions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Overwhelming evidence shows the quality of reporting of randomised controlled trials (RCTs) is not optimal. Without transparent reporting, readers cannot judge the reliability and validity of trial findings nor extract information for systematic reviews. Recent methodological analyses indicate that inadequate reporting and design are associated with biased estimates of treatment effects. Such systematic error is seriously damaging to RCTs, which are considered the gold standard for evaluating interventions because of their ability to minimise or avoid bias. A group of scientists and editors developed the CONSORT (Consolidated Standards of Reporting Trials) statement to improve the quality of reporting of RCTs. It was first published in 1996 and updated in 2001. The statement consists of a checklist and flow diagram that authors can use for reporting an RCT. Many leading medical journals and major international editorial groups have endorsed the CONSORT statement. The statement facilitates critical appraisal and interpretation of RCTs. During the 2001 CONSORT revision, it became clear that explanation and elaboration of the principles underlying the CONSORT statement would help investigators and others to write or appraise trial reports. A CONSORT explanation and elaboration article was published in 2001 alongside the 2001 version of the CONSORT statement. After an expert meeting in January 2007, the CONSORT statement has been further revised and is published as the CONSORT 2010 Statement. This update improves the wording and clarity of the previous checklist and incorporates recommendations related to topics that have only recently received recognition, such as selective outcome reporting bias. This explanatory and elaboration document-intended to enhance the use, understanding, and dissemination of the CONSORT statement-has also been extensively revised. It presents the meaning and rationale for each new and updated checklist item providing examples of good reporting and, where possible, references to relevant empirical studies. Several examples of flow diagrams are included. The CONSORT 2010 Statement, this revised explanatory and elaboration document, and the associated website (www.consort-statement.org) should be helpful resources to improve reporting of randomised trials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Globalisation in coronary stent research calls for harmonization of clinical endpoint definitions and event adjudication. Little has been published about the various processes used for event adjudication or their impact on outcome reporting.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND/AIMS: Rebound tonometry (RT) is performed without anaesthesia with a hand held device. The primary aim was to compare RT with Goldmann applanation tonometry (GAT) and to correlate with central corneal thickness (CCT). The secondary aim was to prove tolerability and practicability of RT under "study conditions" and "routine practice conditions." METHODS: In group 1 (52 eyes/28 patients), all measurements were taken by the same physician, in the same room and order: non-contact optical pachymetry, RT, slit lamp inspection, GAT. Patients were questioned about discomfort or pain. In group 2 (49 eyes/27 patients), tonometry was performed by three other physicians during routine examinations. RESULTS: RT was well tolerated and safe. Intraocular pressure (IOP) ranged between 6 mm Hg and 48 mm Hg. No different trends were found between the groups. RT tended to give slightly higher readings: n = 101, mean difference 1.0 (SD 2.17) mm Hg; 84.1% of RT readings within plus or minus 3 mm Hg of GAT; 95% confidence interval in the Bland-Altman analysis -3.2 mm Hg to +5.2 mm Hg. Both RT and GAT showed a weak positive correlation with CCT (r2 0.028 and 0.025, respectively). CONCLUSIONS: RT can be considered a reliable alternative for clinical screening and in cases where positioning of the head at the slit lamp is impossible or topical preparations are to be avoided.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Much medical research is observational. The reporting of observational studies is often of insufficient quality. Poor reporting hampers the assessment of the strengths and weaknesses of a study and the generalizability of its results. Taking into account empirical evidence and theoretical considerations, a group of methodologists, researchers, and editors developed the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) recommendations to improve the quality of reporting of observational studies.The STROBE Statement consists of a checklist of 22 items, which relate to the title, abstract, introduction, methods, results and discussion sections of articles. Eighteen items are common to cohort studies, case-control studies and cross-sectional studies and four are specific to each of the three study designs. The STROBE Statement provides guidance to authors about how to improve the reporting of observational studies and facilitates critical appraisal and interpretation of studies by reviewers, journal editors and readers.This explanatory and elaboration document is intended to enhance the use, understanding, and dissemination of the STROBE Statement. The meaning and rationale for each checklist item are presented. For each item, one or several published examples and, where possible, references to relevant empirical studies and methodological literature are provided. Examples of useful flow diagrams are also included. The STROBE Statement, this document, and the associated web site (http://www.strobe-statement.org) should be helpful resources to improve reporting of observational research.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Much medical research is observational. The reporting of observational studies is often of insufficient quality. Poor reporting hampers the assessment of the strengths and weaknesses of a study and the generalisability of its results. Taking into account empirical evidence and theoretical considerations, a group of methodologists, researchers, and editors developed the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) recommendations to improve the quality of reporting of observational studies. The STROBE Statement consists of a checklist of 22 items, which relate to the title, abstract, introduction, methods, results and discussion sections of articles. Eighteen items are common to cohort studies, case-control studies and cross-sectional studies and four are specific to each of the three study designs. The STROBE Statement provides guidance to authors about how to improve the reporting of observational studies and facilitates critical appraisal and interpretation of studies by reviewers, journal editors and readers. This explanatory and elaboration document is intended to enhance the use, understanding, and dissemination of the STROBE Statement. The meaning and rationale for each checklist item are presented. For each item, one or several published examples and, where possible, references to relevant empirical studies and methodological literature are provided. Examples of useful flow diagrams are also included. The STROBE Statement, this document, and the associated Web site (http://www.strobe-statement.org/) should be helpful resources to improve reporting of observational research.