59 resultados para TROUT SALMO-GAIRDNERI

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gill disease in salmonids is characterized by a multifactorial aetiology. Epitheliocystis of the gill lamellae caused by obligate intracellular bacteria of the order Chlamydiales is one known factor; however, their diversity has greatly complicated analyses to establish a causal relationship. In addition, tracing infections to a potential environmental source is currently impossible. In this study, we address these questions by investigating a wild brown trout (Salmo trutta) population from seven different sites within a Swiss river system. One age class of fish was followed over 18 months. Epitheliocystis occurred in a site-specific pattern, associated with peak water temperatures during summer months. No evidence of a persistent infection was found within the brown trout population, implying an as yet unknown environmental source. For the first time, we detected 'Candidatus Piscichlamydia salmonis' and 'Candidatus Clavochlamydia salmonicola' infections in the same salmonid population, including dual infections within the same fish. These organisms are strongly implicated in gill disease of caged Atlantic salmon in Norway and Ireland. The absence of aquaculture production within this river system and the distance from the sea, suggests a freshwater origin for both these bacteria and offers new possibilities to explore their ecology free from aquaculture influences.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This field study examined the vitellogenin (VTG) biomarker response under conditions of low and fluctuating activities of environmental estrogenicity. The present study was performed on immature brown trout (Salmo trutta) exposed to the small river Luetzelmurg, which is located in the prealpine Swiss midland region and receives effluents from a single sewage treatment plant (STP). To understand better factors influencing the relationship between estrogenic exposure and VTG induction, we compared VTG levels in caged (stationary) and feral (free-ranging) fish, VTG levels in fish from up- and downstream of the STP, and two different methods for quantifying VTG (enzyme-linked immunosorbent assay vs real-time reverse transcription-polymerase chain reaction), and we used passive samplers (polar organic chemical integrative sampler [POCIS]) to integrate the variable, bioaccumulative estrogenic load in the river water over time. The POCIS from the downstream site contained approximately 20-fold higher levels of bioassay-derived estrogen equivalents than the POCIS from the upstream site. In feral fish, this site difference in estrogenic exposure was reflected in VTG protein levels but not in VTG mRNA. In contrast, in caged fish, the site difference was evident only for VTG mRNA but not for VTG protein. Thus, the outcome of VTG biomarker measurements varied with the analytical detection method (protein vs mRNA) and with the exposure modus (caged vs feral). Our findings suggest that for environmental situations with low and variable estrogenic contamination, a multiple-assessment approach may be necessary for the assessment of estrogenic exposure in fish.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

On the basis of the experiments carried out over various years, it was concluded that (1) grayling Thymallus thymallus and brown trout Salmo trutta are resistant to temperature-induced sex reversal at ecologically relevant temperatures, (2) environmental sex reversal is unlikely to cause the persistent sex ratio distortion observed in at least one of the study populations and (3) sex-specific tolerance of temperature-related stress may be the cause of distorted sex ratios in populations of T. thymallus or S. trutta.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transient exposure of brown trout embryos from fertilization until hatch (70 days) to 17β-estradiol (E2) was investigated. Embryos were exposed to 3.8 and 38.0 ng/L E2 for 2h, respectively, under four scenarios: (A) exposure once at the day of fertilization (0 days post-fertilization, dpf), (B) once at eyeing stage (38 dpf), (C) weekly exposure until hatch or (D) bi-weekly exposure until hatch. Endpoints to assess estrogen impact on embryo development were fertilization success, chronological sequence of developmental events, hatching process, larval malformations, heart rate, body length and mortality. Concentration-dependent acceleration of development until median hatch was observed in all exposure scenarios with the strongest effect observed for embryos exposed once at 0 dpf. In addition, the hatching period was significantly prolonged by 4-5 days in groups receiving single estrogen exposures (scenarios A and B). Heart rate on hatching day was significantly depressed with increasing E2 concentrations, with the strongest effect observed for embryos exposed at eyeing stage. Estrogenic exposure at 0 dpf significantly reduced body length at hatch, not depending on whether this was a single exposure or the first of a series (scenarios A and D). The key finding is that even a single, transient E2 exposure during embryogenesis had significant effects on brown trout development. Median hatch, hatching period, heart rate and body length at hatch were found to be highly sensitive biomarkers responsive to estrogenic exposure during embryogenesis. Treatment effects were observable only at the post-hatch stage.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The European trout (Salmo trutta species complex) is genetically very diverse consisting of five distinct mitochondrial lineages that probably originated in the Pleistocene. Here, we describe a novel pyrosequencing protocol to generate two short sequence reads from the mitochondrial control region, which allow the unambiguous identification of all five lineages. The approach was found to be easily transferable between laboratories and should be a valuable tool for the assessment of genetic diversity in trout. Pyrosequencing-based assays for molecular species identification are expected to be generally useful whenever multiple positions in a short DNA sequence need to be assessed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Species with a wide geographical distribution are often composed of distinct subgroups which may be adapted to their local environment. European trout (Salmo trutta species complex) provide an example of such a complex consisting of several genetically and ecologically distinct forms. However, trout populations are strongly influenced by human activities, and it is unclear to what extent neutral and adaptive genetic differences have persisted. We sampled 30 Swiss trout populations from heterogeneous environments along replicated altitudinal gradients in three major European drainages. More than 850 individuals were genotyped at 18 microsatellite loci which included loci diagnostic for evolutionary lineages and candidate markers associated with temperature tolerance, reproductive timing and immune defence. We find that the phylogeographic structure of Swiss trout populations has not been completely erased by stocking. Distinct genetic clusters corresponding to the different drainages could be identified, although nonindigenous alleles were clearly present, especially in the two Mediterranean drainages. We also still detected neutral genetic differentiation within rivers which was often associated with the geographical distance between populations. Five loci showed evidence of divergent selection between populations with several drainage-specific patterns. Lineage-diagnostic markers, a marker linked to a quantitative trait locus for upper temperature tolerance in other salmonids and a marker linked to the major histocompatibility class I gene were implicated in local adaptation and some patterns were associated with altitude. In contrast, tentative evidence suggests a signal of balancing selection at a second immune relevant gene (TAP2). Our results confirm the persistence of both neutral and potentially adaptive genetic differences between trout populations in the face of massive human-mediated dispersal.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background The European trout (Salmo trutta species complex) occurs across a very wide altitudinal range from lowland rivers to alpine streams. Historically, the major European river systems contained different, evolutionarily distinct trout lineages, and some of this genetic diversity has persisted in spite of extensive human-mediated translocations. We used AFLP-based genome scans to investigate the extent of potentially adaptive divergence among major drainages and along altitudinal gradients replicated in several rivers. Results The proportion of loci showing evidence of divergent selection was larger between drainages than along altitudinal transects within drainages. This suggests divergent selection is stronger between drainages, or adaptive divergence is constrained by gene flow among populations within drainages, although the latter could not be confirmed at a more local scale. Still, altitudinal divergence occurred and, at approximately 2% of the markers, parallel changes of the AFLP band frequencies with altitude were observed suggesting that altitude may well be an important source of divergent selection within rivers. Conclusions Our results indicate that adaptive genetic divergence is common both between major European river systems and along altitudinal gradients within drainages. Alpine trout appear to be a promising model system to investigate the relative roles of divergent selection and gene flow in promoting or preventing adaptation to climate gradients.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this study, we demonstrate the power of applying complementary DNA (cDNA) microarray technology to identifying candidate loci that exhibit subtle differences in expression levels associated with a complex trait in natural populations of a nonmodel organism. Using a highly replicated experimental design involving 180 cDNA microarray experiments, we measured gene-expression levels from 1098 transcript probes in 90 individuals originating from six brown trout (Salmo trutta) and one Atlantic salmon (Salmo salar) population, which follow either a migratory or a sedentary life history. We identified several candidate genes associated with preparatory adaptations to different life histories in salmonids, including genes encoding for transaldolase 1, constitutive heat-shock protein HSC70-1 and endozepine. Some of these genes clustered into functional groups, providing insight into the physiological pathways potentially involved in the expression of life-history related phenotypic differences. Such differences included the down-regulation of genes involved in the respiratory system of future migratory individuals. In addition, we used linear discriminant analysis to identify a set of 12 genes that correctly classified immature individuals as migratory or sedentary with high accuracy. Using the expression levels of these 12 genes, 17 out of 18 individuals used for cross-validation were correctly assigned to their respective life-history phenotype. Finally, we found various candidate genes associated with physiological changes that are likely to be involved in preadaptations to seawater in anadromous populations of the genus Salmo, one of which was identified to encode for nucleophosmin 1. Our findings thus provide new molecular insights into salmonid life-history variation, opening new perspectives in the study of this complex trait.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Proliferative kidney disease (PKD) is a temperature-dependent disease caused by the myxozoan Tetracapsuloides bryosalmonae. It is an emerging threat to wild brown trout Salmo trutta fario populations in Switzerland. Here we examined (1) how PKD prevalence and pathology in young-of-the-year (YOY) brown trout relate to water temperature, (2) whether wild brown trout can completely recover from T. bryosalmonae-induced renal lesions and eliminate T. bryo - salmonae over the winter months, and (3) whether this rate and/or extent of the recovery is influenced by concurrent infection. A longitudinal field study on a wild brown trout cohort was conducted over 16 mo. YOY and age 1+ fish were sampled from 7 different field sites with various temperature regimes, and monitored for infection with T. bryosalmonae and the nematode Raphidascaris acus. T. bryosamonae was detectable in brown trout YOY from all sampling sites, with similar renal pathology, independent of water temperature. During winter months, recovery was mainly influenced by the presence or absence of concurrent infection with R. acus larvae. While brown trout without R. acus regenerated completely, concurrently infected brown trout showed incomplete recovery, with chronic renal lesions and incomplete translocation of T. bryosalmonae from the renal interstitium into the tubular lumen. Water temperature seemed to influence complete excretion of T. bryosalmonae, with spores remaining in trout from summer-warm rivers, but absent in trout from summer-cool rivers. In the following summer months, we found PKD infections in 1+ brown trout from all investigated river sites. The pathological lesions indicated a reinfection rather than a proliferation of remaining T. bryosalmonae. However, disease prevalence in 1+ trout was lower than in YOY.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Proliferative kidney disease (PKD) is an emerging disease threatening wild salmonid populations. In temperature-controlled aquaria, PKD can cause mortality rates of up to 85% in rainbow trout. So far, no data about PKD-related mortality in wild brown trout Salmo trutta fario are available. The aim of this study was to investigate mortality rates and pathology in brown trout kept in a cage within a natural river habitat known to harbor Tetracapsuloides bryosalmonae. Young-of-the-year (YOY) brown trout, free of T. bryosalmonae, were exposed in the River Wutach, in the northeast of Switzerland, during 3 summer months. Samples of wild brown trout caught by electrofishing near the cage location were examined in parallel. The incidence of PKD in cage-exposed animals (69%) was not significantly different to the disease prevalence of wild fish (82 and 80% in the upstream and downstream locations, respectively). The mortality in cageexposed animals, however, was as low as 15%. At the termination of the exposure experiment, surviving fish showed histological lesions typical for PKD regression, suggesting that many YOY brown trout survive the initial infection. Our results at the River Wutach suggest that PKD in brown trout does not always result in high mortality under natural conditions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Bacterial cold water disease (BCWD) and rainbow trout fry syndrome (RTFS) caused by Flavobacterium psychrophilum are 2 of the major diseases causing high fish mortality in salmonid fish farms. The molecular epidemiology of F. psychrophilum is still largely unknown. Multilocus sequence typing (MLST) has been previously used for this pathogen and underscored a correlation between clonal complexes and host fish species. Here we used MLST to study the relationships among 112 F. psychrophilum isolates from rainbow trout Oncorhynchus mykiss and brown trout Salmo trutta fario and S. t. lacustris in Swiss fish farms between 1993 and 2012. The isolates belonged to 27 different sequence types (STs). Most of the Swiss outbreaks were associated with strains belonging to clonal complexes CC-ST2 and CC-ST90, found in both rainbow trout and brown trout and represented by several STs. Eight ST singletons could not be connected to any known clonal complex. Already reported from other parts of Europe and North America, CC-ST2 was the most frequent clonal complex observed, and it caused the majority of outbreaks in Switzerland, with CC-ST90 being the second most important type. In the tightly interconnected Swiss fish farms, no association between clonal complex and host fish was detected, but a temporal evolution of the frequency of some STs was observed. The occurrence of sporadic STs suggests high F. psychrophilum diversity and may reflect the presence of different sequence types in the environment.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Aeromonas salmonicida subsp. salmonicida is the causal agent of furunculosis in salmonids. We recently identified a group of genomic islands (AsaGEI) in this bacterium. AsaGEI2a, one of these genomic islands, has almost exclusively been identified in isolates from North America. To date, Aeromonas salmonicida subsp. salmonicida JF3224, a strain isolated from a wild brown trout (Salmo trutta) caught in Switzerland, was the only European isolate that appeared to bear AsaGEI2a. We analyzed the genome of JF3224 and showed that the genomic island in JF3224 is a new variant of AsaGEI, which we have called AsaGEI2b. While AsaGEI2b shares the same integrase gene and insertion site as AsaGEI2a, it is very different in terms of many other features. Additional genomic investigations combined with PCR genotyping revealed that JF3224 is sensitive to growth at 25°C, leading to insertion sequence-dependent rearrangement of the locus on the pAsa5 plasmid that encodes a type three secretion system, which is essential for the virulence of the bacterium. The analysis of the JF3224 genome confirmed that AsaGEIs are accurate indicators of the geographic origins of A. salmonicida subsp. salmonicida isolates and is another example of the susceptibility of the pAsa5 plasmid to DNA rearrangements.