5 resultados para TRAIT MODELS
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Aims Phenotypic optimality models neglect genetics. However, especially when heterozygous genotypes ire fittest, evolving allele, genotype and phenotype frequencies may not correspond to predicted optima. This was not previously addressed for organisms with complex life histories. Methods Therefore, we modelled the evolution of a fitness-relevant trait of clonal plants, stolon internode length. We explored the likely case of air asymmetric unimodal fitness profile with three model types. In constant selection models (CSMs), which are gametic, but not spatially explicit, evolving allele frequencies in the one-locus and five-loci cases did not correspond to optimum stolon internode length predicted by the spatially explicit, but not gametic, phenotypic model. This deviation was due to the asymmetry of the fitness profile. Gametic, spatially explicit individual-based (SEIB) modeling allowed us relaxing the CSM assumptions of constant selection with exclusively sexual reproduction. Important findings For entirely vegetative or sexual reproduction, predictions. of the gametic SEIB model were close to the ones of spatially explicit CSMs gametic phenotypic models, hut for mixed modes of reproduction they appoximated those of gametic, not spatially explicit CSMs. Thus, in contrast to gametic SEIB models, phenotypic models and, especially for few loci, also CSMs can be very misleading. We conclude that the evolution of trails governed by few quantitative trait loci appears hardly predictable by simple models, that genetic algorithms aiming at technical optimization may actually, miss the optimum and that selection may lead to loci with smaller effects, in derived compared with ancestral lines.
Resumo:
In recent years, there has been a renewed interest in the ecological consequences of individual trait variation within populations. Given that individual variability arises from evolutionary dynamics, to fully understand eco-evolutionary feedback loops, we need to pay special attention to how standing trait variability affects ecological dynamics. There is mounting empirical evidence that intra-specific phenotypic variation can exceed species-level means, but theoretical models of multi-trophic species coexistence typically neglect individual-level trait variability. What is needed are multispecies datasets that are resolved at the individual level that can be used to discriminate among alternative models of resource selection and species coexistence in food webs. Here, using one the largest individual-based datasets of a food web compiled to date, along with an individual trait-based stochastic model that incorporates Approximate Bayesian computation methods, we document intra-population variation in the strength of prey selection by different classes or predator phenotypes which could potentially alter the diversity and coexistence patterns of food webs. In particular, we found that strongly connected individual predators preferentially consumed common prey, whereas weakly connected predators preferentially selected rare prey. Such patterns suggest that food web diversity may be governed by the distribution of predator connectivity and individual trait variation in prey selection. We discuss the consequences of intra-specific variation in prey selection to assess fitness differences among predator classes (or phenotypes) and track longer term food web patterns of coexistence accounting for several phenotypes within each prey and predator species.
Resumo:
The maintenance of genetic variation in a spatially heterogeneous environment has been one of the main research themes in theoretical population genetics. Despite considerable progress in understanding the consequences of spatially structured environments on genetic variation, many problems remain unsolved. One of them concerns the relationship between the number of demes, the degree of dominance, and the maximum number of alleles that can be maintained by selection in a subdivided population. In this work, we study the potential of maintaining genetic variation in a two-deme model with deme-independent degree of intermediate dominance, which includes absence of G x E interaction as a special case. We present a thorough numerical analysis of a two-deme three-allele model, which allows us to identify dominance and selection patterns that harbor the potential for stable triallelic equilibria. The information gained by this approach is then used to construct an example in which existence and asymptotic stability of a fully polymorphic equilibrium can be proved analytically. Noteworthy, in this example the parameter range in which three alleles can coexist is maximized for intermediate migration rates. Our results can be interpreted in a specialist-generalist context and (among others) show when two specialists can coexist with a generalist in two demes if the degree of dominance is deme independent and intermediate. The dominance relation between the generalist allele and the specialist alleles play a decisive role. We also discuss linear selection on a quantitative trait and show that G x E interaction is not necessary for the maintenance of more than two alleles in two demes.
Resumo:
There is a need for accurate predictions of ecosystem carbon (C) and water fluxes in field conditions. Previous research has shown that ecosystem properties can be predicted from community abundance-weighted means (CWM) of plant functional traits and measures of trait variability within a community (FDvar). The capacity for traits to predict carbon (C) and water fluxes, and the seasonal dependency of these trait-function relationships has not been fully explored. Here we measured daytime C and water fluxes over four seasons in grasslands of a range of successional ages in southern England. In a model selection procedure, we related these fluxes to environmental covariates and plant biomass measures before adding CWM and FDvar plant trait measures that were scaled up from measures of individual plants grown in greenhouse conditions. Models describing fluxes in periods of low biological activity contained few predictors, which were usually abiotic factors. In more biologically active periods, models contained more predictors, including plant trait measures. Field-based plant biomass measures were generally better predictors of fluxes than CWM and FDvar traits. However, when these measures were used in combination traits accounted for additional variation. Where traits were significant predictors their identity often reflected seasonal vegetation dynamics. These results suggest that database derived trait measures can improve the prediction of ecosystem C and water fluxes. Controlled studies and those involving more detailed flux measurements are required to validate and explore these findings, a worthwhile effort given the potential for using simple vegetation measures to help predict landscape-scale fluxes.
Resumo:
OBJECTIVE Acute myocardial infarction (MI) is a life-threatening condition, leading to immediate fear and distress in many patients. Approximately 18% of patients develop posttraumatic stress disorder in the aftermath of MI. Trait resilience has shown to be a protective factor for the development of posttraumatic stress disorder. However, whether this buffering effect has already an impact on peritraumatic distress and applies to patients with MI is elusive. METHODS We investigated 98 consecutive patients with acute MI within 48 hours after having reached stable circulatory conditions and 3 months thereafter. Peritraumatic distress was assessed retrospectively with three single-item questions about pain, fear, and helplessness during MI. All patients completed the Posttraumatic Diagnostic Scale (PDS) and the Resilience Scale to self-rate posttraumatic stress and trait resilience. RESULTS Multivariate models adjusting for sociodemographic and medical factors showed that trait resilience was not associated with peritraumatic distress, but significantly so with posttraumatic stress. Patients with greater trait resilience showed lower PDS scores (b = -0.06, p < .001). There was no significant relationship between peritraumatic distress scores and PDS scores; resilience did not emerge as a moderator of this relationship. CONCLUSIONS The findings suggest that trait resilience does not buffer the perception of acute MI as stressful per se but may enhance better coping with the traumatic experience in the longer term, thus preventing the development of MI-associated posttraumatic stress. Trait resilience may play an important role in posttraumatic stress symptoms triggered by medical diseases such as acute MI.