10 resultados para TNF-blocking agent

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Central nervous system involvement is a rare and serious complication of Behçet's disease (BD). Herein, we describe a patient with an atypical central lesion, who experienced progressive hypesthesia of the right arm and sensory loss of the trigeminal nerve together with intense headache. A repeated biopsy was necessary to conclusively establish the diagnosis of BD. Therapy with infusions of infliximab led to a remarkable full remission. TNFα-blocking therapy was successfully replaced by azathioprine. The present well-illustrated case demonstrates the difficulty of establishing the diagnosis of BD with central nervous system involvement, the dramatic benefit of short given TNF-α-blocking agent, and the long-term remission with azathioprin.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

During general anesthesia drugs are administered to provide hypnosis, ensure analgesia, and skeletal muscle relaxation. In this paper, the main components of a newly developed controller for skeletal muscle relaxation are described. Muscle relaxation is controlled by administration of neuromuscular blocking agents. The degree of relaxation is assessed by supramaximal train-of-four stimulation of the ulnar nerve and measuring the electromyogram response of the adductor pollicis muscle. For closed-loop control purposes, a physiologically based pharmacokinetic and pharmacodynamic model of the neuromuscular blocking agent mivacurium is derived. The model is used to design an observer-based state feedback controller. Contrary to similar automatic systems described in the literature this controller makes use of two different measures obtained in the train-of-four measurement to maintain the desired level of relaxation. The controller is validated in a clinical study comparing the performance of the controller to the performance of the anesthesiologist. As presented, the controller was able to maintain a preselected degree of muscle relaxation with excellent precision while minimizing drug administration. The controller performed at least equally well as the anesthesiologist.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

OBJECTIVE: The importance of the costimulatory molecules CD28 and CTLA-4 in the pathologic mechanism of rheumatoid arthritis (RA) has been demonstrated by genetic associations and the successful clinical application of CTLA-4Ig for the treatment of RA. This study was undertaken to investigate the role of the CTLA-4/CD28 axis in the local application of CTLA-4Ig in the synovial fluid (SF) of RA patients. METHODS: Quantitative polymerase chain reaction was used to analyze the expression of proinflammatory and antiinflammatory cytokines in ex vivo fluorescence-activated cell sorted CTLA-4+ and CTLA-4- T helper cells from the peripheral blood and SF of RA patients. T helper cells were also analyzed for cytokine expression in vitro after the blockade of CTLA-4 by anti-CTLA-4 Fab fragments or of B7 (CD80/CD86) molecules by CTLA-4Ig. RESULTS: CTLA-4+ T helper cells were unambiguously present in the SF of all RA patients examined, and they expressed increased amounts of interferon-γ (IFNγ), interleukin-17 (IL-17), and IL-10 as compared to CTLA-4- T helper cells. The selective blockade of CTLA-4 in T helper cells from the SF in vitro led to increased levels of IFNγ, IL-2, and IL-17. The concomitant blockade of CD28 and CTLA-4 in T helper cells from RA SF by CTLA-4Ig in vitro resulted in reduced levels of the proinflammatory cytokines IFNγ and IL-2 and increased levels of the antiinflammatory cytokines IL-10 and transforming growth factor β. CONCLUSION: Our ex vivo and in vitro results demonstrate that the CTLA-4/CD28 axis constitutes a drug target for not only the systemic, but potentially also the local, application of the costimulation blocking agent CTLA-4Ig for the treatment of RA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Observational studies have suggested that patients with rheumatoid arthritis (RA) who experience inadequate response to anti-tumour necrosis factor (anti-TNF) agents respond more favourably to rituximab (RTX) than to an alternative anti-TNF agent. However, the relative effectiveness of these agents on long-term outcomes, particularly in radiographic damage, remains unclear.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recombinant human tumour necrosis factor (TNF) has a selective effect on angiogenic vessels in tumours. Given that it induces vasoplegia, its clinical use has been limited to administration through isolated limb perfusion (ILP) for regionally advanced melanomas and soft tissue sarcomas of the limbs. When combined with the alkylating agent melphalan, a single ILP produces a very high objective response rate. In melanoma, the complete response (CR) rate is around 80% and the overall objective response rate greater than 90%. In soft tissue sarcomas that are inextirpable, ILP is a neoadjuvant treatment resulting in limb salvage in 80% of the cases. The CR rate averages 20% and the objective response rate is around 80%. The mode of action of TNF-based ILP involves two distinct and successive effects on the tumour-associated vasculature: first, an increase in endothelium permeability leading to improved chemotherapy penetration within the tumour tissue, and second, a selective killing of angiogenic endothelial cells resulting in tumour vessel destruction. The mechanism whereby these events occur involves rapid (of the order of minutes) perturbation of cell-cell adhesive junctions and inhibition of alphavbeta3 integrin signalling in tumour-associated vessels, followed by massive death of endothelial cells and tumour vascular collapse 24 hours later. New, promising approaches for the systemic use of TNF in cancer therapy include TNF targeting by means of single chain antibodies or endothelial cell ligands, or combined administration with drugs perturbing integrin-dependent signalling and sensitizing angiogenic endothelial cells to TNF-induced death.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Blockade of cytokines, particularly of tumour necrosis factor alpha (TNF-alpha), in immuno-inflammatory diseases, has led to the greatest advances in medicine of recent years. We did a thorough review of the literature with a focus on inflammation models in rodents on modified gene expression or bioactivity for IL-1, IL-6, and TNF-alpha, and we summarized the results of randomized controlled clinical trials in human disease. What we have learned herewith is that important information can be achieved by the use of animal models in complex, immune-mediated diseases. However, a clear ranking for putative therapeutic targets appears difficult to obtain from an experimental approach alone. This is primarily due to the fact that none of the disease models has proven to cover more than one crucial pathogenetic aspect of the complex cascade of events leading to characteristic clinical disease signs and symptoms. This supports the notion that the addressed human immune-mediated diseases are polygenic and the summation of genetic, perhaps epigenetic, and environmental factors. Nevertheless, it has become apparent, so far, that TNF-alpha is of crucial importance in the development of antigen-dependent and antigen-independent models of inflammation, and that these results correlate well with clinical success. With some delay, clinical trials in conditions having some relationship with rheumatoid arthritis (RA) indicate new opportunities for blocking IL-1 or IL-6 therapeutically. It appears, therefore, that a translational approach with critical, mutual reflection of simultaneously performed experiments and clinical trials is important for rapid identification of new targets and development of novel treatment options in complex, immune-mediated, inflammatory diseases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mononuclear phagocytes have been attributed a crucial role in the host defense toward influenza virus (IV), but their contribution to influenza-induced lung failure is incompletely understood. We demonstrate for the first time that lung-recruited "exudate" macrophages significantly contribute to alveolar epithelial cell (AEC) apoptosis by the release of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) in a murine model of influenza-induced pneumonia. Using CC-chemokine receptor 2-deficient (CCR2(-/-)) mice characterized by defective inflammatory macrophage recruitment, and blocking anti-CCR2 antibodies, we show that exudate macrophage accumulation in the lungs of influenza-infected mice is associated with pronounced AEC apoptosis and increased lung leakage and mortality. Among several proapoptotic mediators analyzed, TRAIL messenger RNA was found to be markedly up-regulated in alveolar exudate macrophages as compared with peripheral blood monocytes. Moreover, among the different alveolar-recruited leukocyte subsets, TRAIL protein was predominantly expressed on macrophages. Finally, abrogation of TRAIL signaling in exudate macrophages resulted in significantly reduced AEC apoptosis, attenuated lung leakage, and increased survival upon IV infection. Collectively, these findings demonstrate a key role for exudate macrophages in the induction of alveolar leakage and mortality in IV pneumonia. Epithelial cell apoptosis induced by TRAIL-expressing macrophages is identified as a major underlying mechanism.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background Tumor necrosis factor (TNF) inhibition is central to the therapy of inflammatory bowel diseases (IBD). However, loss of response (LOR) is frequent and additional tests to help decision making with costly anti-TNF Therapy are needed. Methods Consecutive IBD Patients receiving anti-TNF therapy (Infliximab (IFX) or Adalimumab (after IFX LOR) from Bern University Hospital were identified and followed prospectively. Patient whole blood was stimulated with a dose-titration of two triggers of TLR receptors human: TNF and LPS. Median fluorescence intensity of CD62L on the surface of granulocytes was quantified by surface staining with specific antibodies (CD33, CD62L) and flow cytometry and logistic curves to these data permits the calculation of EC50 or the half maximal effective concentration TNF concentration to induce shedding [1]. A shift in the concentration were CD62L shedding occurred was seen before and after the anti-TNF agent administraion which permits to predict the response to the drug. This predicted response was correlated to the clinical evolution of the patients in order to analyze the ability of this test to identify LOR to IFX. Results We collected prospective clinical data and blood samples, before and after anti-TNF agent administration, on 33 IBD patients, 25 Crohn's disease and 8 ulcerative colitis patients (45% females) between June 2012 and November 2013. The assay showed a functional blockade of IFX (PFR) for 22 patients (17 CD and 5 UC) whereas 11 (8 CD and 3 UC) had no functional response (NR) to IFX. Clinical characteristics (e.g. diagnosis, disease location, smoking status, BMI and number of infusions) were no significantly different between predicted PFR and NR. Among the 22 Patients with PRF, only 1 patient was a clinical non responder (LOR to IFX), based on clinical prospective evaluation by IBD gastroenterologists (PJ, AM), and among the 11 predicted NR, 3 had no clinical LOR. Sensitivity of this test was 95% and specificity 73% and AUC adjusted for age and gender was 0.81 (Figure 1). During follow up (median 10 mo, 3–15) 8 “hard” outcomes occured (3 medic. flares, 4 resections and 1 new fistula) 2 in the PFR and 6 in the NR group (25% vs. 75%; p < 0.01). Correlation with clinical response is presented in Figure 2. Figure 1. Figure 2. Correlation clinical response - log EC50 changes: 1 No, 2 partial, 3 complete clinical response. Conclusion CD62L (L-Selectin) shedding is the first validated test of functional blockade of TNF alpha in anti-TNF treated IBD patients and will be a useful tool to guide medical decision on the use of anti-TNF agents. Comparative studies with ATI and trough level of IFX are ongoing. 1. Nicola Patuto, Emma Slack, Frank Seibold and Andrew J. Macpherson, (2011), Quantitating Anti-TNF Functionality to Inform Dosing and Choice of Therapy, Gastroenterology, 140 (5, Suppl. I), S689.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Anticancer therapies currently used in the clinic often can neither eradicate the tumor nor prevent disease recurrence due to tumor resistance. In this study, we showed that chemoresistance to pemetrexed, a multi-target anti-folate (MTA) chemotherapeutic agent for non-small cell lung cancer (NSCLC), is associated with a stem cell-like phenotype characterized by an enriched stem cell gene signature, augmented aldehyde dehydrogenase activity and greater clonogenic potential. Mechanistically, chemoresistance to MTA requires activation of epithelial-to-mesenchymal transition (EMT) pathway in that an experimentally induced EMT per se promotes chemoresistance in NSCLC and inhibition of EMT signaling by kaempferol renders the otherwise chemoresistant cancer cells susceptible to MTA. Relevant to the clinical setting, human primary NSCLC cells with an elevated EMT signaling feature a significantly enhanced potential to resist MTA, whereas concomitant administration of kaempferol abrogates MTA chemoresistance, regardless of whether it is due to an intrinsic or induced activation of the EMT pathway. Collectively, our findings reveal that a bona fide activation of EMT pathway is required and sufficient for chemoresistance to MTA and that kaempferol potently regresses this chemotherapy refractory phenotype, highlighting the potential of EMT pathway inhibition to enhance chemotherapeutic response of lung cancer.