3 resultados para TIN OXIDE ELECTRODES

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Here we report the first study on the electrochemical energy storage application of a surface-immobilized ruthenium complex multilayer thin film with anion storage capability. We employed a novel dinuclear ruthenium complex with tetrapodal anchoring groups to build well-ordered redox-active multilayer coatings on an indium tin oxide (ITO) surface using a layer-by-layer self-assembly process. Cyclic voltammetry (CV), UV-Visible (UV-Vis) and Raman spectroscopy showed a linear increase of peak current, absorbance and Raman intensities, respectively with the number of layers. These results indicate the formation of well-ordered multilayers of the ruthenium complex on ITO, which is further supported by the X-ray photoelectron spectroscopy analysis. The thickness of the layers can be controlled with nanometer precision. In particular, the thickest layer studied (65 molecular layers and approx. 120 nm thick) demonstrated fast electrochemical oxidation/reduction, indicating a very low attenuation of the charge transfer within the multilayer. In situ-UV-Vis and resonance Raman spectroscopy results demonstrated the reversible electrochromic/redox behavior of the ruthenium complex multilayered films on ITO with respect to the electrode potential, which is an ideal prerequisite for e.g. smart electrochemical energy storage applications. Galvanostatic charge–discharge experiments demonstrated a pseudocapacitor behavior of the multilayer film with a good specific capacitance of 92.2 F g−1 at a current density of 10 μA cm−2 and an excellent cycling stability. As demonstrated in our prototypical experiments, the fine control of physicochemical properties at nanometer scale, relatively good stability of layers under ambient conditions makes the multilayer coatings of this type an excellent material for e.g. electrochemical energy storage, as interlayers in inverted bulk heterojunction solar cell applications and as functional components in molecular electronics applications.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A major concern of electrocatalysis research is to assess the structural and chemical changes that a catalyst may itself undergo in the course of the catalyzed process. These changes can influence not only the activity of the studied catalyst but also its selectivity toward the formation of a certain product. An illustrative example is the electroreduction of carbon dioxide on tin oxide nanoparticles, where under the operating conditions of the electrolysis (that is, at cathodic potentials), the catalyst undergoes structural changes which, in an extreme case, involve its reduction to metallic tin. This results in a decreased Faradaic efficiency (FE) for the production of formate (HCOO–) that is otherwise the main product of CO2 reduction on SnOx surfaces. In this study, we utilized potential- and time-dependent in operando Raman spectroscopy in order to monitor the oxidation state changes of SnO2 that accompany CO2 reduction. Investigations were carried out at different alkaline pH levels, and a strong correlation between the oxidation state of the surface and the FE of HCOO– formation was found. At moderately cathodic potentials, SnO2 exhibits a high FE for the production of formate, while at very negative potentials the oxide is reduced to metallic Sn, and the efficiency of formate production is significantly decreased. Interestingly, the highest FE of formate production is measured at potentials where SnO2 is thermodynamically unstable; however, its reduction is kinetically hindered.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The emerging application of long-term and high-quality ECG recording requires alternative electrodes to improve the signal quality and recording capability of surface skin electrodes. The esophageal ECG has the potential to overcome these limitations but necessitates novel recorder and lead designs. The electrode material is of particular interest, since the material has to ensure conflicting requirements like excellent biopotential recording properties and inertness. To this end, novel electrode materials like PEDOT and silver-PDMS as well as established electrode materials such as stainless steel, platinum, gold, iridium oxide, titanium nitride, and glassy carbon were investigated by long-term electrochemical impedance spectroscopy and model-based signal analysis using the derived in vitro interfacial properties in conjunction with a dedicated ECG amplifier. The results of this novel approach show that titanium nitride and iridium oxide featuring microstructured surfaces did not degrade when exposed to artificial acidic saliva. These materials provide low electrode potential drifts and insignificant signal distortion superior to surface skin electrodes making them compatible with accepted standards for ambulatory ECG. They are superior to the noble and polarizable metals such as platinum, silver, and gold that induced more signal distortions and are superior to esophageal stainless steel electrodes that corrode in artificial saliva. The study provides rigorous criteria for the selection of electrode materials for prolonged ECG recording by combining long-term in vitro electrode material properties with ECG signal quality assessment.