4 resultados para THERMOTOLERANCE

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Free-living amoebae (FLA) belonging to Acanthamoeba spp., Naegleria fowleri, Balamuthia mandrillaris, and Sappinia pedata are known to cause infections in humans and animals leading to severe brain pathologies. Worldwide, warm aquatic environments have been found to be suitable habitats for pathogenic FLA. The present study reports on screening for potentially pathogenic FLA in four hot spring resorts in Switzerland. Water samples were taken from water filtration units and from the pools, respectively. Amoebae isolated from samples taken during, or before, the filtration process were demonstrated to be morphologically and phylogenetically related to Stenoamoeba sp., Hartmannella vermiformis, Echinamoeba exundans, and Acanthamoeba healyi. With regard to the swimming pools, FLA were isolated only in one resort, and the isolate was identified as non-pathogenic and as related to E. exundans. Further investigations showed that the isolates morphologically and phylogenetically related to A. healyi displayed a pronounced thermotolerance, and exhibited a marked in vitro cytotoxicity upon 5-day exposure to murine L929 fibroblasts. Experimental intranasal infection of Rag2-immunodeficient mice with these isolates led to severe brain pathologies, and viable trophozoites were isolated from the nasal mucosa, brain tissue, and lungs post mortem. In summary, isolates related to A. healyi were suggestive of being potentially pathogenic to immunocompromised persons. However, the presence of these isolates was limited to the filtration units, and an effective threat for health can therefore be excluded.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Free-ling amoebae (FLA) including Acanthamoeba spp., Naegleria fowleri, Balamuthia mandrillaris and Sappinia pedata, can cause opportunistic infections leading to severe brain pathologies. Human infections with pathogenic FLA have been increasingly documented in many countries. In Switzerland, thus far, the occurrence and distribution of potentially pathogenic FLA has not been investigated. Swiss water biotopes, including swimming pools, lakes, rivers and ponds, have now been screened for the presence of FLA, and assessment of their pathogenicity potential for a mammalian host has been undertaken. Thus, a total of 17 isolates were recovered by in vitro cultivation from these different aquatic sources. Characterization by sequence analysis of Acanthamoeba spp.-specific and 'FLA-specific PCR products amplified from 18s rDNA based on morphological traits, thermotolerance, and cytotoxicity towards murine fibroblasts yielded the following findings: Echinamoeba cf. exundans (3 isolates), Hartmannella spp. (3), Vannella spp. (4), Protacanthamoebica cf. bohemica (1), Acanthamoeba cf. castellanii (1) and Naegleria spp. (5). B. mandrillaris and N. fowleri did not range amongst these isolates. None of the isolates exhibited pronounced cytotoxicity and all failed to grow at 42 degrees C; therefore, they do not present any potential for CNS pathogenicity for humans.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Some free-living amoebae, including some species of the genus Acanthamoeba, can cause infections in humans and animals. These organisms are known to cause granulomatous amebic encephalitis (GAE) in predominantly immune-deficient persons. In the present study, we isolated a potentially human pathogenic Acanthamoeba isolate originating from a public heated indoor swimming pool in Switzerland. The amoebae, thermophilically preselected by culture at 37 degrees C, subsequently displayed a high thermotolerance, being able to grow at 42 degrees C, and a marked cytotoxicity, based on a co-culture system using the murine cell line L929. Intranasal infection of Rag2-immunodeficient mice resulted in the death of all animals within 24 days. Histopathology of brains and lungs revealed marked tissue necrosis and hemorrhagic lesions going along with massive proliferation of amoebae. PCR and sequence analysis, based on 18S rDNA, identified the agent as Acanthamoeba lenticulata. In summary, the present study reports on an Acanthamoeba isolate from a heated swimming pool suggestive of being potentially pathogenic to immunocompromised persons.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVES The characterization of differential gene expression in Giardia lamblia WB C6 strain C4 resistant to metronidazole and nitazoxanide using microarray technology and quantitative real-time PCR. METHODS In a previous study, we created and characterized the G. lamblia WB C6 clone C4 resistant to nitazoxanide and metronidazole. In this study, using a microarray-based approach, we have identified open-reading frames (ORFs) that were differentially expressed in C4 when compared with its wild-type WB C6. Using quantitative real-time PCR, we have validated the expression patterns of some of those ORFs, focusing on chaperones such as heat-shock proteins in wild-type and C4 trophozoites. In order to induce an antigenic shift, trophozoites of both strains were subjected to a cycle of en- and excystation. Expression of selected genes and resistance to nitazoxanide and metronidazole were investigated after this cycle. RESULTS Forty of a total of 9115 ORFs were found to be up-regulated and 46 to be down-regulated in C4 when compared with wild-type. After a cycle of en- and excystation, resistance of C4 to nitazoxanide and metronidazole was lost. Resistance formation and en-/excystation were correlated with changes in expression of ORFs encoding for major surface antigens such as the variant surface protein TSA417 or AS7 ('antigenic shift'). Moreover, expression patterns of the cytosolic heat-shock protein HSP70 B2, HSP40, and of the previously identified nitazoxanide-binding proteins nitroreductase and protein disulphide isomerase PDI4 were correlated with resistance and loss of resistance after en-/excystation. C4 trophozoites had a higher thermotolerance level than wild-type trophozoites. After en-/excystation, this tolerance was lost. CONCLUSIONS These results suggest that resistance formation in Giardia to nitazoxanide and metronidazole is correlated with altered expression of genes involved in stress response such as heat-shock proteins.