185 resultados para TESLA MAGNETIC-RESONANCE

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Evaluation of a novel non-invasive tool for postoperative follow-up of patients postelective saphenous vein coronary artery bypass graft (CABG) was performed. Ten patients were included. Their bypass grafts supplied the right coronary artery (7), marginal branches (1), diagonal branches (2), and the circumflex artery (n=1). Each bypass was examined intraoperatively using Doppler flow measurement. Patients were examined with a 3-Tesla magnetic resonance imaging (MRI) scanner (MAGNETOM Verio, Siemens, Erlangen, Germany) within one week postsurgery using MR-angiography with an intravasal contrast agent and velocity encoded phase-contrast flow measurements. Intraoperative Doppler flow measurements revealed regular flow patterns in all vascular territories supplied. The median intraoperative flow rate was 50 ml/min with an inter-quartile range (IQR) of 42-70 ml/min. The clinical postoperative course was uneventful. MRI showed all grafts to be patent. The median postoperative flow rate was 50 ml/min (IQR: 32-65 ml/min). MRI flow rates agreed well with intraoperative Doppler flow measurements (mean difference: -2.8±20.1 ml/min). This initial study demonstrates that 3-Tesla MRI flow measurements correlated well with Doppler thus reconfirming the graft patency postCABG. Further refinement and broader application of this technique may facilitate follow-up postCABG potentially replacing empiric clinical judgment by reliable non-invasive imaging.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: To prospectively determine the accuracy of 1.5 Tesla (T) and 3 T magnetic resonance angiography (MRA) versus digital subtraction angiography (DSA) in the depiction of infrageniculate arteries in patients with symptomatic peripheral arterial disease. PATIENTS AND METHODS: A prospective 1.5 T, 3 T MRA, and DSA comparison was used to evaluate 360 vessel segments in 10 patients (15 limbs) with chronic symptomatic peripheral arterial disease. Selective DSA was performed within 30 days before both MRAs. The accuracy of 1.5 T and 3 T MRA was compared with DSA as the standard of reference by consensus agreement of 2 experienced readers. Signal-to-noise ratios (SNR) and signal-difference-to-noise ratios (SDNRs) were quantified. RESULTS: No significant difference in overall image quality, sufficiency for diagnosis, depiction of arterial anatomy, motion artifacts, and venous overlap was found comparing 1.5 T with 3 T MRA (P > 0.05 by Wilcoxon signed rank and as by Cohen k test). Overall sensitivity of 1.5 and 3 T MRA for detection of significant arterial stenosis was 79% and 82%, and specificity was 87% and 87% for both modalities, respectively. Interobserver agreement was excellent k > 0.8, P < 0.05) for 1.5 T as well as for 3 T MRA. SNR and SDNR were significantly increased using the 3 T system (average increase: 36.5%, P < 0.032 by t test, and 38.5%, P < 0.037 respectively). CONCLUSIONS: Despite marked improvement of SDNR, 3 T MRA does not yet provide a significantly higher accuracy in diagnostic imaging of atherosclerotic lesions below the knee joint as compared with 1.5 T MRA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

INTRODUCTION: Ultra-high-field whole-body systems (7.0 T) have a high potential for future human in vivo magnetic resonance imaging (MRI). In musculoskeletal MRI, biochemical imaging of articular cartilage may benefit, in particular. Delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) and T2 mapping have shown potential at 3.0 T. Although dGEMRIC, allows the determination of the glycosaminoglycan content of articular cartilage, T2 mapping is a promising tool for the evaluation of water and collagen content. In addition, the evaluation of zonal variation, based on tissue anisotropy, provides an indicator of the nature of cartilage ie, hyaline or hyaline-like articular cartilage.Thus, the aim of our study was to show the feasibility of in vivo dGEMRIC, and T2 and T2* relaxation measurements, at 7.0 T MRI; and to evaluate the potential of T2 and T2* measurements in an initial patient study after matrix-associated autologous chondrocyte transplantation (MACT) in the knee. MATERIALS AND METHODS: MRI was performed on a whole-body 7.0 T MR scanner using a dedicated circular polarization knee coil. The protocol consisted of an inversion recovery sequence for dGEMRIC, a multiecho spin-echo sequence for standard T2 mapping, a gradient-echo sequence for T2* mapping and a morphologic PD SPACE sequence. Twelve healthy volunteers (mean age, 26.7 +/- 3.4 years) and 4 patients (mean age, 38.0 +/- 14.0 years) were enrolled 29.5 +/- 15.1 months after MACT. For dGEMRIC, 5 healthy volunteers (mean age, 32.4 +/- 11.2 years) were included. T1 maps were calculated using a nonlinear, 2-parameter, least squares fit analysis. Using a region-of-interest analysis, mean cartilage relaxation rate was determined as T1 (0) for precontrast measurements and T1 (Gd) for postcontrast gadopentate dimeglumine [Gd-DTPA(2-)] measurements. T2 and T2* maps were obtained using a pixelwise, monoexponential, non-negative least squares fit analysis; region-of-interest analysis was carried out for deep and superficial cartilage aspects. Statistical evaluation was performed by analyses of variance. RESULTS: Mean T1 (dGEMRIC) values for healthy volunteers showed slightly different results for femoral [T1 (0): 1259 +/- 277 ms; T1 (Gd): 683 +/- 141 ms] compared with tibial cartilage [T1 (0): 1093 +/- 281 ms; T1 (Gd): 769 +/- 150 ms]. Global mean T2 relaxation for healthy volunteers showed comparable results for femoral (T2: 56.3 +/- 15.2 ms; T2*: 19.7 +/- 6.4 ms) and patellar (T2: 54.6 +/- 13.0 ms; T2*: 19.6 +/- 5.2 ms) cartilage, but lower values for tibial cartilage (T2: 43.6 +/- 8.5 ms; T2*: 16.6 +/- 5.6 ms). All healthy cartilage sites showed a significant increase from deep to superficial cartilage (P < 0.001). Within healthy cartilage sites in MACT patients, adequate values could be found for T2 (56.6 +/- 13.2 ms) and T2* (18.6 +/- 5.3 ms), which also showed a significant stratification. Within cartilage repair tissue, global mean values showed no difference, with 55.9 +/- 4.9 ms for T2 and 16.2 +/- 6.3 ms for T2*. However, zonal assessment showed only a slight and not significant increase from deep to superficial cartilage (T2: P = 0.174; T2*: P = 0.150). CONCLUSION: In vivo T1 dGEMRIC assessment in healthy cartilage, and T2 and T2* mapping in healthy and reparative articular cartilage, seems to be possible at 7.0 T MRI. For T2 and T2*, zonal variation of articular cartilage could also be evaluated at 7.0 T. This zonal assessment of deep and superficial cartilage aspects shows promising results for the differentiation of healthy and affected articular cartilage. In future studies, optimized protocol selection, and sophisticated coil technology, together with increased signal at ultra-high-field MRI, may lead to advanced biochemical cartilage imaging.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVES: To determine quantitative and qualitative image quality in patients undergoing magnetic resonance (MR) cholangiography at 3.0 Tesla (T) compared with 1.5 T. MATERIALS AND METHODS: Fifty patients (30 women; mean age, 51 years) underwent MR cholangiography at 1.5 T; another 50 patients (25 women; mean age 51 years) were scanned at 3.0 T. MR sequence protocol consisted of breath-hold single-slice rapid acquisition with relaxation enhancement (RARE) and a respiratory-triggered 3D turbo spin echo (3D TSE) sequence. Maximum intensity projections were generated from the 3D TSE datasets. Contrast-to-noise ratio (CNR) measurements between the common bile duct (CBD), left and right intrahepatic duct (LHD, RHD), and periductal tissue were performed. Three radiologists assessed qualitatively the visibility of the CBD, LHD, and RHD and the overall diagnostic quality. RESULTS: Mean gain in CNR at 3.0 T versus 1.5 T in all 3 locations ranged for the RARE sequence from 7.7% to 38.1% and for the 3D TSE from 0.5% to 26.1% (P > 0.05 for all differences). Qualitative analysis did not reveal any significant difference between the 2 field strengths (P > 0.05). CONCLUSIONS: MR cholangiography at 3.0 T shows a trend toward higher CNR without improving image quality significantly.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVES: To assess magnetic resonance (MR)-colonography (MRC) for detection of colorectal lesions using two different T1w three-dimensional (3D)-gradient-recalled echo (GRE)-sequences and integrated parallel data acquisition (iPAT) at a 3.0 Tesla MR-unit. MATERIALS AND METHODS: In this prospective study, 34 symptomatic patients underwent dark lumen MRC at a 3.0 Tesla unit before conventional colonoscopy (CC). After colon distension with tap water, 2 high-resolution T1w 3D-GRE [3-dimensional fast low angle shot (3D-FLASH), iPAT factor 2 and 3D-volumetric interpolated breathhold examination (VIBE), iPAT 3] sequences were acquired without and after bolus injection of gadolinium. Prospective evaluation of MRC was performed. Image quality of the different sequences was assessed qualitatively and quantitatively. The findings of the same day CC served as standard of reference. RESULTS: MRC identified all polyps >5 mm (16 of 16) in size and all carcinomas (4 of 4) correctly. Fifty percent of the small polyps 0.6). CONCLUSIONS: MRC using 3D-GRE-sequences and iPAT is feasible at 3.0 T-systems. The high-resolution 3D-FLASH was slightly preferred over the 3D-VIBE because of better image quality, although both used sequences showed no statistical significant difference.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Magnetic resonance imaging (MRI) is the most promising noninvasive modality for hip joint evaluation, but it has limitations in diagnosing cartilage lesion and acetabular labrum changes, especially in early stages. This is significant due to superior outcome results of surgery intervention in hip dysplasia or femoroacetabular impingement in patients not exceeding early degeneration. This emphasizes the need for accurate and reproducible methods in evaluating cartilage structure. In this article, we discuss the impact of the most recent technological advance in MRI, namely the advantage of 3-T imaging, on diagnostic imaging of the hip. Limitations of standard imaging techniques are shown with emphasis on femoroacetabular impingement. Clinical imaging examples and biochemical techniques are presented that need to be further evaluated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Morphological and biochemical magnetic resonance imaging (MRI) is due to high field MR systems, advanced coil technology, and sophisticated sequence protocols capable of visualizing articular cartilage in vivo with high resolution in clinical applicable scan time. Several conventional two-dimensional (2D) and three-dimensional (3D) approaches show changes in cartilage structure. Furthermore newer isotropic 3D sequences show great promise in improving cartilage imaging and additionally in diagnosing surrounding pathologies within the knee joint. Functional MR approaches are additionally able to provide a specific measure of the composition of cartilage. Cartilage physiology and ultra-structure can be determined, changes in cartilage macromolecules can be detected, and cartilage repair tissue can thus be assessed and potentially differentiated. In cartilage defects and following nonsurgical and surgical cartilage repair, morphological MRI provides the basis for diagnosis and follow-up evaluation, whereas biochemical MRI provides a deeper insight into the composition of cartilage and cartilage repair tissue. A combination of both, together with clinical evaluation, may represent a desirable multimodal approach in the future, also available in routine clinical use.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

INTRODUCTION: Cartilage defects are common pathologies and surgical cartilage repair shows promising results. In its postoperative evaluation, the magnetic resonance observation of cartilage repair tissue (MOCART) score, using different variables to describe the constitution of the cartilage repair tissue and the surrounding structures, is widely used. High-field magnetic resonance imaging (MRI) and 3-dimensional (3D) isotropic sequences may combine ideal preconditions to enhance the diagnostic performance of cartilage imaging.Aim of this study was to introduce an improved 3D MOCART score using the possibilities of an isotropic 3D true fast imaging with steady-state precession (True-FISP) sequence in the postoperative evaluation of patients after matrix-associated autologous chondrocyte transplantation (MACT) as well as to compare the results to the conventional 2D MOCART score using standard MR sequences. MATERIAL AND METHODS: The study had approval by the local ethics commission. One hundred consecutive MR scans in 60 patients at standard follow-up intervals of 1, 3, 6, 12, 24, and 60 months after MACT of the knee joint were prospectively included. The mean follow-up interval of this cross-sectional evaluation was 21.4 +/- 20.6 months; the mean age of the patients was 35.8 +/- 9.4 years. MRI was performed at a 3.0 Tesla unit. All variables of the standard 2D MOCART score where part of the new 3D MOCART score. Furthermore, additional variables and options were included with the aims to use the capabilities of isotropic MRI, to include the results of recent studies, and to adapt to the needs of patients and physician in a clinical routine examination. A proton-density turbo spin-echo sequence, a T2-weighted dual fast spin-echo (dual-FSE) sequence, and a T1-weighted turbo inversion recovery magnitude (TIRM) sequence were used to assess the standard 2D MOCART score; an isotropic 3D-TrueFISP sequence was prepared to evaluate the new 3D MOCART score. All 9 variables of the 2D MOCART score were compared with the corresponding variables obtained by the 3D MOCART score using the Pearson correlation coefficient; additionally the subjective quality and possible artifacts of the MR sequences were analyzed. RESULTS: The correlation between the standard 2D MOCART score and the new 3D MOCART showed for the 8 variables "defect fill," "cartilage interface," "surface," "adhesions," "structure," "signal intensity," "subchondral lamina," and "effusion"-a highly significant (P < 0.001) correlation with a Pearson coefficient between 0.566 and 0.932. The variable "bone marrow edema" correlated significantly (P < 0.05; Pearson coefficient: 0.257). The subjective quality of the 3 standard MR sequences was comparable to the isotropic 3D-TrueFISP sequence. Artifacts were more frequently visible within the 3D-TrueFISP sequence. CONCLUSION: In the clinical routine follow-up after cartilage repair, the 3D MOCART score, assessed by only 1 high-resolution isotropic MR sequence, provides comparable information than the standard 2D MOCART score. Hence, the new 3D MOCART score has the potential to combine the information of the standard 2D MOCART score with the possible advantages of isotropic 3D MRI at high-field. A clear limitation of the 3D-TrueFISP sequence was the high number of artifacts. Future studies have to prove the clinical benefits of a 3D MOCART score.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND Arthroscopy is considered as "the gold standard" for the diagnosis of traumatic intraarticular knee lesions. However, recent developments in magnetic resonance imaging (MRI) now offer good opportunities for the indirect assessment of the integrity and structural changes of the knee articular cartilage. The study was to investigate whether cartilage-specific sequences on a 3-Tesla MRI provide accurate assessment for the detection of cartilage defects. METHODS A 3-Tesla (3-T) MRI combined with three-dimensional double-echo steady-state (3D-DESS) cartilage specific sequences was performed on 210 patients with knee pain prior to knee arthroscopy. Sensitivity, specificity, and positive and negative predictive values of magnetic resonance imaging were calculated and correlated to the arthroscopic findings of cartilaginous lesions. Lesions were classified using the modified Outerbridge classification. RESULTS For the 210 patients (1260 cartilage surfaces: patella, trochlea, medial femoral condyle, medial tibia, lateral femoral condyle, lateral tibia) evaluated, the sensitivities, specificities, positive predictive values, and negative predictive values of 3-T MRI were 83.3, 99.8, 84.4, and 99.8 %, respectively, for the detection of grade IV lesions; 74.1, 99.6, 85.2, and 99.3 %, respectively, for grade III lesions; 67.9, 99.2, 76.6, and 98.2 %, respectively, for grade II lesions; and 8.8, 99.5, 80, and 92 %, respectively, for grade I lesions. CONCLUSIONS For grade III and IV lesions, 3-T MRI combined with 3D-DESS cartilage-specific sequences represents an accurate diagnostic tool. For grade II lesions, the technique demonstrates moderate sensitivity, while for grade I lesions, the sensitivity is limited to provide reliable diagnosis compared to knee arthroscopy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this prospective trial was to evaluate sensitivity and specificity of bright lumen magnetic resonance colonography (MRC) in comparison with conventional colonoscopy (CC). A total of 120 consecutive patients with clinical indications for CC were prospectively examined using MRC (1.5 Tesla) which was then followed by CC. Prior to MRC, the cleansed colon was filled with a gadolinium-water solution. A 3D GRE sequence was performed with the patient in the prone and supine position, each acquired during one breathhold period. After division of the colon into five segments, interactive data analysis was carried out using three-dimensional post-processing, including a virtual intraluminal view. The results of CC served as a reference standard. In all patients MRC was performed successfully and no complications occurred. Image quality was diagnostic in 92% (574/620 colonic segments). On a per-patient basis, the results of MRC were as follows: sensitivity 84% (95% CI 71.7-92.3%), specificity 97% (95% CI 89.0-99.6%). Five flat adenomas and 6/16 small polyps (< or =5 mm) were not identified by MRC. MRC offers high sensitivity and excellent specificity rates in patients with clinical indications for CC. Improved MRC techniques are needed to detect small polyps and flat adenomas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

STUDY DESIGN: The structural integrity of the nucleus pulposus (NP) of intervertebral discs was targeted by enzyme-specific degradations to correlate their effects to the magnetic resonance (MR) signal. OBJECTIVE: To develop quantitative MR imaging as an accurate and noninvasive diagnostic tool to better understand and treat disc degeneration. SUMMARY OF BACKGROUND DATA: Quantitative MR analysis has been previously shown to reflect not only the disc matrix composition, but also the structural integrity of the disc matrix. Further work is required to identify the contribution of the structural integrity versus the matrix composition to the MR signal. METHODS: The bovine coccygeal NPs were injected with either enzyme or buffer, incubated at 37 degrees C as static, unloaded and closed 3-disc segments, and analyzed by a 1.5-Tesla MR scanner to measure MR parameters. RESULTS: Collagenase degradation of the NP significantly decreased the relaxation times, slightly decreased the magnetization transfer ratio, and slightly increased the apparent diffusion coefficient. Targeting the proteoglycan and/or hyaluronan integrity by trypsin and hyaluronidase did not significantly affect the MR parameters, except for an increase in the apparent diffusion coefficient of the disc after trypsin treatment. CONCLUSIONS: Our results demonstrate that changes in the structural integrity of matrix proteins can be assessed by quantitative MR.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background Conventional cross-sectional imaging with computed tomography and magnetic resonance imaging (MRI) has limited accuracy for lymph node (LN) staging in bladder and prostate cancer patients. Objective To prospectively assess the diagnostic accuracy of combined ultrasmall superparamagnetic particles of iron oxide (USPIO) MRI and diffusion-weighted (DW) MRI in staging of normal-sized pelvic LNs in bladder and/or prostate cancer patients. Design, setting, and participants Examinations with 3-Tesla MRI 24–36 h after administration of USPIO using conventional MRI sequences combined with DW-MRI (USPIO-DW-MRI) were performed in 75 patients with clinically localised bladder and/or prostate cancer staged previously as N0 by conventional cross-sectional imaging. Combined USPIO-DW-MRI findings were analysed by three independent readers and correlated with histopathologic LN findings after extended pelvic LN dissection (PLND) and resection of primary tumours. Outcome measurements and statistical analysis Sensitivity and specificity for LN status of combined USPIO-DW-MRI versus histopathologic findings were evaluated per patient (primary end point) and per pelvic side (secondary end point). Time required for combined USPIO-DW-MRI reading was assessed. Results and limitations At histopathologic analysis, 2993 LNs (median: 39 LNs; range: 17–68 LNs per patient) with 54 LN metastases (1.8%) were found in 20 of 75 (27%) patients. Per-patient sensitivity and specificity for detection of LN metastases by the three readers ranged from 65% to 75% and 93% to 96%, respectively; sensitivity and specificity per pelvic side ranged from 58% to 67% and 94% to 97%, respectively. Median reading time for the combined USPIO-DW-MRI images was 9 min (range: 3–26 min). A potential limitation is the absence of a node-to-node correlation of combined USPIO-DW-MRI and histopathologic analysis. Conclusions Combined USPIO-DW-MRI improves detection of metastases in normal-sized pelvic LNs of bladder and/or prostate cancer patients in a short reading time.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Postmortem MRI (PMMR) examinations are seldom performed in legal medicine due to long examination times, unfamiliarity with the technique, and high costs. Furthermore, it is difficult to obtain access to an MRI device used for patients in clinical settings to image an entire human body. An alternative is available: ex situ organ examination. To our knowledge, there is no standardized protocol that includes ex situ organ preparation and scanning parameters for postmortem MRI. Thus, our objective was to develop a standard procedure for ex situ heart PMMR examinations. We also tested the oily contrast agent Angiofil® commonly used for PMCT angiography, for its applicability in MRI. We worked with a 3 Tesla MRI device and 32-channel head coils. Twelve porcine hearts were used to test different materials to find the best way to prepare and place organs in the device and to test scanning parameters. For coronary MR angiography, we tested different mixtures of Angiofil® and different injection materials. In a second step, 17 human hearts were examined to test the procedure and its applicability to human organs. We established two standardized protocols: one for preparation of the heart and another for scanning parameters based on experience in clinical practice. The established protocols enabled a standardized technical procedure with comparable radiological images, allowing for easy radiological reading. The performance of coronary MR angiography enabled detailed coronary assessment and revealed the utility of Angiofil® as a contrast agent for PMMR. Our simple, reproducible method for performing heart examinations ex situ yields high quality images and visualization of the coronary arteries.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE We prospectively assessed the diagnostic accuracy of diffusion-weighted magnetic resonance imaging for detecting significant prostate cancer. MATERIALS AND METHODS We performed a prospective study of 111 consecutive men with prostate and/or bladder cancer who underwent 3 Tesla diffusion-weighted magnetic resonance imaging of the pelvis without an endorectal coil before radical prostatectomy (78) or cystoprostatectomy (33). Three independent readers blinded to clinical and pathological data assigned a prostate cancer suspicion grade based on qualitative imaging analysis. Final pathology results of prostates with and without cancer served as the reference standard. Primary outcomes were the sensitivity and specificity of diffusion-weighted magnetic resonance imaging for detecting significant prostate cancer with significance defined as a largest diameter of the index lesion of 1 cm or greater, extraprostatic extension, or Gleason score 7 or greater on final pathology assessment. Secondary outcomes were interreader agreement assessed by the Fleiss κ coefficient and image reading time. RESULTS Of the 111 patients 93 had prostate cancer, which was significant in 80 and insignificant in 13, and 18 had no prostate cancer on final pathology results. The sensitivity and specificity of diffusion-weighted magnetic resonance imaging for detecting significant PCa was 89% to 91% and 77% to 81%, respectively, for the 3 readers. Interreader agreement was good (Fleiss κ 0.65 to 0.74). Median reading time was between 13 and 18 minutes. CONCLUSIONS Diffusion-weighted magnetic resonance imaging (3 Tesla) is a noninvasive technique that allows for the detection of significant prostate cancer with high probability without contrast medium or an endorectal coil, and with good interreader agreement and a short reading time. This technique should be further evaluated as a tool to stratify patients with prostate cancer for individualized treatment options.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE Precise temperature measurements in the magnetic field are indispensable for MR safety studies and for temperature calibration during MR-guided thermotherapy. In this work, the interference of two commonly used fiber-optical temperature measurement systems with the static magnetic field B0 was determined. METHODS Two fiber-optical temperature measurement systems, a GaAs-semiconductor and a phosphorescent phosphor ceramic, were compared for temperature measurements in B0 . The probes and a glass thermometer for reference were placed in an MR-compatible tube phantom within a water bath. Temperature measurements were carried out at three different MR systems covering static magnetic fields up to B0  = 9.4T, and water temperatures were changed between 25°C and 65°C. RESULTS The GaAs-probe significantly underestimated absolute temperatures by an amount related to the square of B0 . A maximum difference of ΔT = -4.6°C was seen at 9.4T. No systematic temperature difference was found with the phosphor ceramic probe. For both systems, the measurements were not dependent on the orientation of the sensor to B0 . CONCLUSION Temperature measurements with the phosphor ceramic probe are immune to magnetic fields up to 9.4T, whereas the GaAs-probes either require a recalibration inside the MR system or a correction based on the square of B0 . Magn Reson Med, 2014. © 2014 Wiley Periodicals, Inc.