160 resultados para TARGETING AUTOPHAGY
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Melanoma, occurring as a rapidly progressive skin cancer, is resistant to current chemo- and radiotherapy, especially after metastases to distant organs has taken place. Most chemotherapeutic drugs exert their cytotoxic effect by inducing apoptosis, which, however, is often deficient in cancer cells. Thus, it is appropriate to attempt the targeting of alternative pathways, which regulate cellular viability. Recent studies of autophagy, a well-conserved cellular catabolic process, promise to improve the therapeutic outcome in melanoma patients. Although a dual role for autophagy in cancer therapy has been reported, both protecting against and promoting cell death, the potential for using autophagy in cancer therapy seems to be promising. Here, we review the recent literature on the role of autophagy in melanoma with respect to the expression of autophagic markers, the involvement of autophagy in chemo- and immunotherapy, as well as the role of autophagy in hypoxia and altered metabolic pathways employed for melanoma therapy.
Resumo:
The clinical use of anthracyclines in cancer therapy is limited by dose-dependent cardiotoxicity that involves cardiomyocyte injury and death. We have tested the hypothesis that anthracyclines affect protein degradation pathways in adult cardiomyocytes. To this aim, we assessed the effects of doxorubicin (Doxo) on apoptosis, autophagy and the proteasome/ubiquitin system in long-term cultured adult rat cardiomyocytes. Accumulation of poly-ubiquitinated proteins, increase of cathepsin-D-positive lysosomes and myofibrillar degradation were observed in Doxo-treated cardiomyocytes. Chymotrypsin-like activity of the proteasome was initially increased and then inhibited by Doxo over a time-course of 48 h. Proteasome 20S proteins were down-regulated by higher doses of Doxo. The expression of MURF-1, an ubiquitin-ligase specifically targeting myofibrillar proteins, was suppressed by Doxo at all concentrations measured. Microtubule-associated protein 1 light chain 3B (LC3)-positive punctae and both LC3-I and -II proteins were induced by Doxo in a dose-dependent manner, as confirmed by using lentiviral expression of green fluorescence protein bound to LC3 and live imaging. The lysosomotropic drug chloroquine led to autophagosome accumulation, which increased with concomitant Doxo treatment indicating enhanced autophagic flux. We conclude that Doxo causes a downregulation of the protein degradation machinery of cardiomyocytes with a resulting accumulation of poly-ubiquitinated proteins and autophagosomes. Although autophagy is initially stimulated as a compensatory response to cytotoxic stress, it is followed by apoptosis and necrosis at higher doses and longer exposure times. This mechanism might contribute to the late cardiotoxicity of anthracyclines by accelerated aging of the postmitotic adult cardiomyocytes and to the susceptibility of the aging heart to anthracycline cancer therapy.
Resumo:
Autophagy is a lysosomal bulk degradation pathway for cytoplasmic cargo, such as long-lived proteins, lipids, and organelles. Induced upon nutrient starvation, autophagic degradation is accomplished by the concerted actions of autophagy-related (ATG) proteins. Here we demonstrate that two ATGs, human Atg2A and Atg14L, colocalize at cytoplasmic lipid droplets (LDs) and are functionally involved in controlling the number and size of LDs in human tumor cell lines. We show that Atg2A is targeted to cytoplasmic ADRP-positive LDs that migrate bidirectionally along microtubules. The LD localization of Atg2A was found to be independent of the autophagic status. Further, Atg2A colocalized with Atg14L under nutrient-rich conditions when autophagy was not induced. Upon nutrient starvation and dependent on phosphatidylinositol 3-phosphate [PtdIns(3)P] generation, both Atg2A and Atg14L were also specifically targeted to endoplasmic reticulum-associated early autophagosomal membranes, marked by the PtdIns(3)P effectors double-FYVE containing protein 1 (DFCP1) and WD-repeat protein interacting with phosphoinositides 1 (WIPI-1), both of which function at the onset of autophagy. These data provide evidence for additional roles of Atg2A and Atg14L in the formation of early autophagosomal membranes and also in lipid metabolism.
Resumo:
Acute myeloid leukemia (AML) is characterized by the accumulation of immature blood cell precursors in the bone marrow. Pharmacologically overcoming the differentiation block in this condition is an attractive therapeutic avenue, which has achieved success only in a subtype of AML, acute promyelocytic leukemia (APL). Attempts to emulate this success in other AML subtypes have thus far been unsuccessful. Autophagy is a conserved protein degradation pathway with important roles in mammalian cell differentiation, particularly within the hematopoietic system. In the study described here, we investigated the functional importance of autophagy in APL cell differentiation. We found that autophagy is increased during all-trans-retinoic acid (ATRA)-induced granulocytic differentiation of the APL cell line NB4 and that this is associated with increased expression of LC3II and GATE-16 proteins involved in autophagosome formation. Autophagy inhibition, using either drugs (chloroquine/3-methyladenine) or short-hairpin RNA targeting the essential autophagy gene ATG7, attenuates myeloid differentiation. Importantly, we found that enhancing autophagy promotes ATRA-induced granulocytic differentiation of an ATRA-resistant derivative of the non-APL AML HL60 cell line (HL60-Diff-R). These data support the development of strategies to stimulate autophagy as a novel approach to promote differentiation in AML.
Resumo:
The gastrin-releasing peptide receptor (GRPR) is overexpressed on a number of human tumors and has been targeted with radiolabeled bombesin analogues for the diagnosis and therapy of these cancers. Seven bombesin analogues containing various linkers and peptide sequences were designed, synthesized, radiolabeled with (18)F, and characterized in vitro and in vivo as potential PET imaging agents. Binding studies displayed nanomolar binding affinities toward human GRPR for all synthesized bombesin analogues. Two high-affinity peptide candidates 6b (K(i) = 0.7 nM) and 7b (K(i) = 0.1 nM) were chosen for further in vivo evaluation. Both tracers revealed specific uptake in GRPR-expressing PC-3 tumors and the pancreas. Compared to [(18)F]6b, compound [(18)F]7b was characterized by superior tumor uptake, higher specificity of tracer uptake, and more favorable tumor-to-nontarget ratios. In vivo PET imaging allowed for the visualization of PC-3 tumor in nude mice suggesting that [(18)F]7b is a promising PET tracer candidate for the diagnosis of GRPR-positive tumors in humans.
Resumo:
Radiolabelled somatostatin-based antagonists show a higher uptake in tumour-bearing mouse models than agonists of similar or even distinctly higher receptor affinity. Very similar results were obtained with another family of G protein-coupled receptor ligands, the bombesin family. We describe a new conjugate, RM2, with the chelator DOTA coupled to D-Phe-Gln-Trp-Ala-Val-Gly-His-Sta-Leu-NH(2) via the cationic spacer 4-amino-1-carboxymethyl-piperidine for labelling with radiometals such as (111)In and (68)Ga.
Resumo:
Autophagy (literally self-eating) is a catabolic mechanism involved in the recycling and turnover of cytoplasmic constituents. Although often referred to as type II programmed cell death, autophagy is primarily a survival rather than a cell death mechanism in response to different stress stimuli. Autophagy is a process in which part of the cytoplasm or entire organelles are sequestered into double-membrane vesicles, called autophagosomes, which ultimately fuse with lysosomes to degrade their contents. Studies show that autophagy is associated with a number of pathological conditions, including cancer, infectious diseases, myopathies and neurodegenerative disorders. With respect to cancer, it has been suggested that the early stages of tumourigenesis are associated with downregulation of autophagy-related (ATG) genes. Indeed, several ATG genes display tumour suppressor function, including Beclin1, which is frequently hemizygously deleted in breast cancer cells. Conversely, in advanced stages of tumourigenesis or during anticancer therapy, autophagy may promote survival of tumour cells in adverse environmental conditions. Therefore, a thorough understanding of autophagy in different cancer types and stages is a prerequisite to determine an autophagy-activating or autophagy-inhibiting treatment strategy.
Resumo:
Autophagy is a conserved proteolytic mechanism that degrades cytoplasmic material including cell organelles. Although the importance of autophagy for cell homeostasis and survival has long been appreciated, our understanding of how autophagy is regulated at a molecular level just recently evolved. The importance of autophagy for the quality control of proteins is underscored by the fact that many neurodegenerative and myodegenerative diseases are characterized by an increased but still insufficient autophagic activity. Similarly, if the cellular stress, leading to deoxyribonucleic acid (DNA) damage, mitochondrial damage and/or damaged proteins, does not result in sufficient autophagic repair mechanisms, cells seem to be prone to transform into tumour cells. Therefore, autophagy has multiple roles to play in the causation and prevention of human diseases.
Resumo:
Naive T cells are migratory cells that continuously recirculate between blood and lymphoid tissues. Antigen-specific stimulation of T cells within the lymph nodes reprograms the trafficking properties of T cells by inducing a specific set of adhesion molecules and chemokine receptors on their surface which allow these activated and effector T cells to effectively and specifically home to extralymphoid organs. The observations of organ-specific homing of T cells initiated the development of therapeutic strategies targeting adhesion receptors for organ-specific inhibition of chronic inflammation. As most adhesion receptors have additional immune functions besides mediating leukocyte trafficking, these drugs may have additional immunomodulatory effects. Therapeutic targeting of T-cell trafficking to the central nervous system is the underlying concept of a novel treatment of relapsing remitting multiple sclerosis with the humanized anti-alpha-4-integrin antibody natalizumab. In this chapter, we describe a possible preclinical in vivo approach to directly visualize the therapeutic efficacy of a given drug in inhibiting T-cell homing to a certain organ at the example of the potential of natalizumab to inhibit the trafficking of human T cells to the inflamed central nervous system in an animal model of multiple sclerosis.
Resumo:
Epothilones are potent antiproliferative agents, which have served as successful lead structures for anticancer drug discovery. However, their therapeutic efficacy would benefit greatly from an increase in their selectivity for tumor cells, which may be achieved through conjugation with a tumor-targeting moiety. Three novel epothilone analogs bearing variously functionalized benzimidazole side chains were synthesized using a strategy based on palladium-mediated coupling and macrolactonization. The synthesis of these compounds is described and their in vitro biological activity is discussed with respect to their interactions with the tubulin/microtubule system and the inhibition of human cancer cell proliferation. The additional functional groups may be used to synthesize conjugates of epothilone derivatives with a variety of tumor-targeting moieties.
Resumo:
In the human body, over 1000 different G protein-coupled receptors (GPCRs) mediate a broad spectrum of extracellular signals at the plasma membrane, transmitting vital physiological features such as pain, sight, smell, inflammation, heart rate and contractility of muscle cells. Signaling through these receptors is primarily controlled and regulated by a group of kinases, the GPCR kinases (GRKs), of which only seven are known and thus, interference with these common downstream GPCR regulators suggests a powerful therapeutic strategy. Molecular modulation of the kinases that are ubiquitously expressed in the heart has proven GRK2, and also GRK5, to be promising targets for prevention and reversal of one of the most severe pathologies in man, chronic heart failure (HF). In this article we will focus on the structural aspects of these GRKs important for their physiological and pathological regulation as well as well known and novel therapeutic approaches that target these GRKs in order to overcome the development of cardiac injury and progression of HF.
Resumo:
Glucagon-like peptide-1 (GLP-1) receptor imaging is superior to somatostatin receptor subtype 2 (sst(2)) imaging in localizing benign insulinomas. Here, the role of GLP-1 and sst(2) receptor imaging in the management of malignant insulinoma patients was investigated.
Resumo:
Ceramide is a key lipid mediator of cellular processes such as differentiation, proliferation, growth arrest and apoptosis. During apoptosis, ceramide is produced within the plasma membrane. Although recent data suggest that the generation of intracellular ceramide increases mitochondrial permeability, the source of mitochondrial ceramide remains unknown. Here, we determine whether a stress-mediated plasmalemmal pool of ceramide might become available to the mitochondria of apoptotic cells. We have previously established annexin A1--a member of a family of Ca(2+) and membrane-binding proteins--to be a marker of ceramide platforms. Using fluorescently tagged annexin A1, we show that, upon its generation within the plasma membrane, ceramide self-associates into platforms that subsequently invaginate and fuse with mitochondria. An accumulation of ceramide within the mitochondria of apoptotic cells was also confirmed using a ceramide-specific antibody. Electron microscopic tomography confirmed that upon the formation of ceramide platforms, the invaginated regions of the plasma membrane extend deep into the cytoplasm forming direct physical contacts with mitochondrial outer membranes. Ceramide might thus be directly transferred from the plasma membrane to the mitochondrial outer membrane. It is conceivable that this "kiss-of-death" increases the permeability of the mitochondrial outer membrane thereby triggering apoptosis.