14 resultados para T84 colon cells

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Glucocorticoids (GC) have important anti-inflammatory and pro-apoptotic activities. Initially thought to be exclusively produced by the adrenal glands, there is now increasing evidence for extra-adrenal sources of GCs. We have previously shown that the intestinal epithelium produces immunoregulatory GCs and that intestinal steroidogenesis is regulated by the nuclear receptor liver receptor homolog-1 (LRH-1). As LRH-1 has been implicated in the development of colon cancer, we here investigated whether LRH-1 regulates GC synthesis in colorectal tumors and whether tumor-produced GCs suppress T-cell activation. Colorectal cancer cell lines and primary tumors were found to express steroidogenic enzymes and regulatory factors required for the de novo synthesis of cortisol. Both cell lines and primary tumors constitutively produced readily detectable levels of cortisol, as measured by radioimmunoassay, thin-layer chromatography and bioassay. Whereas overexpression of LRH-1 significantly increased the expression of steroidogenic enzymes and the synthesis of cortisol, downregulation or inhibition of LRH-1 effectively suppressed these processes, indicating an important role of LRH-1 in colorectal tumor GC synthesis. An immunoregulatory role of tumor-derived GCs could be further confirmed by demonstrating a suppression of T-cell activation. This study describes for the first time cortisol synthesis in a non-endocrine tumor in humans, and suggests that the synthesis of bioactive GCs in colon cancer cells may account as a novel mechanism of tumor immune escape.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Expression or release of immunosuppressive molecules may protect tumor cells from the recognition and destruction by the immune system. New findings indicate that colorectal tumors produce immunoregulatory glucocorticoids and thereby suppress immune cell activation. The nuclear receptor LRH-1 plays a critical role in the regulation of colorectal tumor proliferation and glucocorticoid synthesis.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Thiazolides are a novel class of broad-spectrum anti-infective drugs with promising in vitro and in vivo activities against intracellular and extracellular protozoan parasites. The nitrothiazole-analogue nitazoxanide (NTZ; 2-acetolyloxy-N-(5-nitro 2-thiazolyl) benzamide) represents the thiazolide parent compound, and a number of bromo- and carboxy-derivatives with differing activities have been synthesized. Here we report that NTZ and the bromo-thiazolide RM4819, but not the carboxy-thiazolide RM4825, inhibited proliferation of the colon cancer cell line Caco2 and nontransformed human foreskin fibroblasts (HFF) at or below concentrations the compounds normally exhibit anti-parasitic activity. Thiazolides induced typical signs of apoptosis, such as nuclear condensation, DNA fragmentation and phosphatidylserine exposure. Interestingly, the apoptosis-inducing effect of thiazolides appeared to be cell cycle-dependent and induction of cell cycle arrest substantially inhibited the cell death-inducing activity of these compounds. Using affinity chromatography and mass spectrometry glutathione-S-transferase P1 (GSTP1) from the GST class Pi was identified as a major thiazolide-binding protein. GSTP1 expression was more than 10 times higher in the thiazolide-sensitive Caco2 cells than in the less sensitive HFF cells. The enzymatic activity of recombinant GSTP1 was strongly inhibited by thiazolides. Silencing of GSTP1 using siRNA rendered cells insensitive to RM4819, while overexpression of GSTP1 increased sensitivity to RM4819-induced cell death. Thiazolides may thus represent an interesting novel class of future cancer therapeutics.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Defining new therapeutic strategies to overcome therapy resistance due to tumor heterogeneity in colon cancer is challenging. One option is to explore the molecular profile of aggressive disseminating tumor cells. The cytoskeleton-associated Death-associated protein kinase (DAPK) is involved in the cross talk between tumor and immune cells at the invasion front of colorectal cancer. Here dedifferentiated tumor cells histologically defined as tumor budding are associated with a high risk of metastasis and poor prognosis. Analyzing samples from 144 colorectal cancer patients we investigated immunhistochemical DAPK expression in different tumor regions such as center, invasion front, and buds. Functional consequences for tumor aggressiveness were studied in a panel of colon tumor cell lines using different migration, wound healing, and invasion assays. DAPK levels were experimentally modified by siRNA transfection and overexpression as well as inhibitor treatments. We found that DAPK expression was reduced towards the invasion front and was nearly absent in tumor buds. Applying the ECIS system with HCT116 and HCT116 stable lentiviral DAPK knock down cells (HCTshDAPK) we identified an important role for DAPK in decreasing the migratory capacity whereas proliferation was not affected. Furthermore, the migration pattern differed with HCTshDAPK cells showing a cluster-like migration of tumor cell groups. DAPK inhibitor treatment revealed that the migration rate was independent of DAPK's catalytic activity. Modulation of DAPK expression level in SW480 and DLD1 colorectal cancer cells significantly influenced wound closure rate. DAPK seems to be a major player that influences the migratory capability of disseminating tumor cells and possibly affects the dynamic interface between pro- and anti-survival factors at the invasion front of colorectal cancer. This interesting and new finding requires further evaluation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Glutathione-S-transferase of the Pi class (GSTP1) is frequently overexpressed in a variety of solid tumors and has been identified as a potential therapeutic target for cancer therapy. GSTP1 is a phase II detoxification enzyme and conjugates the tripeptide glutathione to endogenous metabolites and xenobiotics, thereby limiting the efficacy of antitumor chemotherapeutic treatments. In addition, GSTP1 regulates cellular stress responses and apoptosis by sequestering and inactivating c-Jun N-terminal kinase (JNK). Thiazolides are a novel class of antibiotics for the treatment of intestinal pathogens with no apparent side effects on the host cells and tissue. Here we show that thiazolides induce a GSTP1-dependent and glutathione-enhanced cell death in colorectal tumor cell lines. Downregulation of GSTP1 reduced the apoptotic activity of thiazolides, whereas overexpression enhanced it. Thiazolide treatment caused strong Jun kinase activation and Jun kinase-dependent apoptosis. As a critical downstream target of Jun kinase we identified the pro-apoptotic Bcl-2 homolog Bim. Thiazolides induced Bim expression and activation in a JNK-dependent manner. Downregulation of Bim in turn significantly blocked thiazolide-induced apoptosis. Whereas low concentrations of thiazolides failed to induce apoptosis directly, they potently sensitized colon cancer cells to TNF-related apoptosis-inducing ligand- and chemotherapeutic drug-induced cell death. Although GSTP1 overexpression generally limits chemotherapy and thus antitumor treatment, our study identifies GSTP1 as Achilles' heel and thiazolides as novel interesting apoptosis sensitizer for the treatment of colorectal tumors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sphingosine kinases (SK) catalyze the phosphorylation of proapoptotic sphingosine to the prosurvival factor sphingosine 1-phosphate (S1P), thereby promoting oncogenic processes. Breast (MDA-MB-231), lung (NCI-H358), and colon (HCT 116) carcinoma cells were transduced with shRNA to downregulate SK-1 expression or treated with a pharmacologic SK-1 inhibitor. The effects of SK-1 targeting were investigated by measuring the level of intracellular sphingosine, the activity of protein kinase C (PKC) and cell cycle regulators, and the mitotic index. Functional assays included measurement of cell proliferation, colony formation, apoptosis, and cell cycle analysis. Downregulation of SK-1 or its pharmacologic inhibition increased intracellular sphingosine and decreased PKC activity as shown by reduced phosphorylation of PKC substrates. In MDA-MB-231 cells this effect was most pronounced and reduced cell proliferation and colony formation, which could be mimicked using exogenous sphingosine or the PKC inhibitor RO 31-8220. SK-1 downregulation in MDA-MB-231 cells increased the number of cells with 4N and 8N DNA content, and similar effects were observed upon treatment with sphingosine or inhibitors of SK-1 or PKC. Examination of cell cycle regulators unveiled decreased cdc2 activity and expression of Chk1, which may compromise spindle checkpoint function and cytokinesis. Indeed, SK-1 kd cells entered mitosis but failed to divide, and in the presence of taxol also failed to sustain mitotic arrest, resulting in further increased endoreduplication and apoptosis. Our findings delineate an intriguing link between SK-1, PKC and components of the cell cycle machinery, which underlines the significance of SK-1 as a target for cancer therapy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE: To describe the distribution of muscarinic receptor subtypes M(1) to M(5) and interstitial cells of Cajal (ICCs) in the gastrointestinal tract of healthy dairy cows. SAMPLE POPULATION: Full-thickness samples were collected from the fundus, corpus, and pyloric part of the abomasum and from the duodenum, ileum, cecum, proximal loop of the ascending colon, and both external loops of the spiral colon of 5 healthy dairy cows after slaughter. PROCEDURES: Samples were fixed in paraformaldehyde and embedded in paraffin. Muscarinic receptor subtypes and ICCs were identified by immunohistochemical analysis. RESULTS: Staining for M(1) receptors was found in the submucosal plexus and myenteric plexus. Antibodies against M(2) receptors stained nuclei of smooth muscle cells only. Evidence of M(3) receptors was found in the lamina propria, in intramuscular neuronal terminals, on intermuscular nerve fibers, and on myocytes of microvessels. There was no staining for M(4) receptors. Staining for M(5) receptors was evident in the myocytes of microvessels and in smooth muscle cells. The ICCs were detected in the myenteric plexus and within smooth muscle layers. Distribution among locations of the bovine gastrointestinal tract did not differ for muscarinic receptor subtypes or ICCs. CONCLUSIONS AND CLINICAL RELEVANCE: The broad distribution of M(1), M(3), M(5), and ICCs in the bovine gastrointestinal tract indicated that these components are likely to play an important role in the regulation of gastrointestinal tract motility in healthy dairy cows. Muscarinic receptors and ICCs may be implicated in the pathogenesis of motility disorders, such as abomasal displacement and cecal dilatation-dislocation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The thiazolides represent a novel class of anti-infective drugs, with the nitrothiazole nitazoxanide [2-acetolyloxy-N-(5-nitro 2-thiazolyl) benzamide] (NTZ) as the parent compound. NTZ exhibits a broad spectrum of activities against a wide variety of helminths, protozoa, and enteric bacteria infecting animals and humans. In vivo, NTZ is rapidly deacetylated to tizoxanide (TIZ), which exhibits similar activities. We have here comparatively investigated the in vitro effects of NTZ, TIZ, a number of other modified thiazolides, and metronidazole (MTZ) on Giardia lamblia trophozoites grown under axenic culture conditions and in coculture with the human cancer colon cell line Caco2. The modifications of the thiazolides included, on one hand, the replacement of the nitro group on the thiazole ring with a bromide, and, on the other hand, the differential positioning of methyl groups on the benzene ring. Of seven compounds with a bromo instead of a nitro group, only one, RM4820, showed moderate inhibition of Giardia proliferation in axenic culture, but not in coculture with Caco2 cells, with a 50% inhibitory concentration (IC50) of 18.8 microM; in comparison, NTZ and tizoxanide had IC50s of 2.4 microM, and MTZ had an IC50 of 7.8 microM. Moreover, the methylation or carboxylation of the benzene ring at position 3 resulted in a significant decrease of activity, and methylation at position 5 completely abrogated the antiparasitic effect of the nitrothiazole compound. Trophozoites treated with NTZ showed distinct lesions on the ventral disk as soon as 2 to 3 h after treatment, whereas treatment with metronidazole resulted in severe damage to the dorsal surface membrane at later time points.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we investigated whether bcl-xL can be involved in the modulation of the angiogenic phenotype of human tumor cells. Using the ADF human glioblastoma and the M14 melanoma lines, and their derivative bcl-xL-overexpressing clones, we showed that the conditioned medium of bcl-xL transfectants increased in vitro endothelial cell functions, such as proliferation and morphogenesis, and in vivo vessel formation in Matrigel plugs, compared with the conditioned medium of control cells. Moreover, the overexpression of bcl-xL induced an increased expression of the proangiogenic interleukin-8 (CXCL8), both at the protein and mRNA levels, and an enhanced CXCL8 promoter activity. The role of CXCL8 on bcl-xL-induced angiogenesis was validated using CXCL8-neutralizing antibodies, whereas down-regulation of bcl-xL through antisense oligonucleotide or RNA interference strategies confirmed the involvement of bcl-xL on CXCL8 expression. Transient overexpression of bcl-xL led to extend this observation to other tumor cell lines with different origin, such as colon and prostate carcinoma. In conclusion, our results showed that CXCL8 modulation by bcl-xL regulates tumor angiogenesis, and they point to elucidate an additional function of bcl-xL protein.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cancer cells acquire drug resistance as a result of selection pressure dictated by unfavorable microenvironments. This survival process is facilitated through efficient control of oxidative stress originating from mitochondria that typically initiates programmed cell death. We show this critical adaptive response in cancer cells to be linked to uncoupling protein-2 (UCP2), a mitochondrial suppressor of reactive oxygen species (ROS). UCP2 is present in drug-resistant lines of various cancer cells and in human colon cancer. Overexpression of UCP2 in HCT116 human colon cancer cells inhibits ROS accumulation and apoptosis after exposure to chemotherapeutic agents. Tumor xenografts of UCP2-overexpressing HCT116 cells retain growth in nude mice receiving chemotherapy. Augmented cancer cell survival is accompanied by altered NH(2)-terminal phosphorylation of the pivotal tumor suppressor p53 and induction of the glycolytic phenotype (Warburg effect). These findings link UCP2 with molecular mechanisms of chemoresistance. Targeting UCP2 may be considered a novel treatment strategy for cancer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE Neural invasion (NI) is a histopathologic feature of colon cancer that receives little consideration. Therefore, we conducted a morphologic and functional characterization of NI in colon cancer. EXPERIMENTAL DESIGN NI was investigated in 673 patients with colon cancer. Localization and severity of NI was determined and related to patient's prognosis and survival. The neuro-affinity of colon cancer cells (HT29, HCT-116, SW620, and DLD-1) was compared with pancreatic cancer (T3M4 and SU86.86) and rectal cancer cells (CMT-93) in the in vitro three-dimensional (3D)-neural-migration assay and analyzed via live-cell imaging. Immunoreactivity of the neuroplasticity marker GAP-43, and the neurotrophic-chemoattractant factors Artemin and nerve growth factor (NGF), was quantified in colon cancer and pancreatic cancer nerves. Dorsal root ganglia of newborn rats were exposed to supernatants of colon cancer, rectal cancer, and pancreatic cancer cells and neurite density was determined. RESULTS NI was detected in 210 of 673 patients (31.2%). Although increasing NI severity scores were associated with a significantly poorer survival, presence of NI was not an independent prognostic factor in colon cancer. In the 3D migration assay, colon cancer and rectal cancer cells showed much less neurite-targeted migration when compared with pancreatic cancer cells. Supernatants of pancreatic cancer and rectal cancer cells induced a much higher neurite density than those of colon cancer cells. Accordingly, NGF, Artemin, and GAP-43 were much more pronounced in nerves in pancreatic cancer than in colon cancer. CONCLUSION NI is not an independent prognostic factor in colon cancer. The lack of a considerable biologic affinity between colon cancer cells and neurons, the low expression profile of colonic nerves for chemoattractant molecules, and the absence of a major neuroplasticity in colon cancer may explain the low prevalence and impact of NI in colon cancer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Immune responses against intestinal microbiota contribute to the pathogenesis of inflammatory bowel diseases (IBD) and involve CD4(+) T cells, which are activated by major histocompatibility complex class II (MHCII) molecules on antigen-presenting cells (APCs). However, it is largely unexplored how inflammation-induced MHCII expression by intestinal epithelial cells (IEC) affects CD4(+) T cell-mediated immunity or tolerance induction in vivo. Here, we investigated how epithelial MHCII expression is induced and how a deficiency in inducible epithelial MHCII expression alters susceptibility to colitis and the outcome of colon-specific immune responses. Colitis was induced in mice that lacked inducible expression of MHCII molecules on all nonhematopoietic cells, or specifically on IECs, by continuous infection with Helicobacter hepaticus and administration of interleukin (IL)-10 receptor-blocking antibodies (anti-IL10R mAb). To assess the role of interferon (IFN)-γ in inducing epithelial MHCII expression, the T cell adoptive transfer model of colitis was used. Abrogation of MHCII expression by nonhematopoietic cells or IECs induces colitis associated with increased colonic frequencies of innate immune cells and expression of proinflammatory cytokines. CD4(+) T-helper type (Th)1 cells - but not group 3 innate lymphoid cells (ILCs) or Th17 cells - are elevated, resulting in an unfavourably altered ratio between CD4(+) T cells and forkhead box P3 (FoxP3)(+) regulatory T (Treg) cells. IFN-γ produced mainly by CD4(+) T cells is required to upregulate MHCII expression by IECs. These results suggest that, in addition to its proinflammatory roles, IFN-γ exerts a critical anti-inflammatory function in the intestine which protects against colitis by inducing MHCII expression on IECs. This may explain the failure of anti-IFN-γ treatment to induce remission in IBD patients, despite the association of elevated IFN-γ and IBD.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aldosterone promotes electrogenic sodium reabsorption through the amiloride-sensitive epithelial sodium channel (ENaC). Here, we investigated the importance of ENaC and its positive regulator channel-activating protease 1 (CAP1/Prss8) in colon. Mice lacking the αENaC subunit in colonic superficial cells (Scnn1a(KO)) were viable, without fetal or perinatal lethality. Control mice fed a regular or low-salt diet had a significantly higher amiloride-sensitive rectal potential difference (∆PDamil) than control mice fed a high-salt diet. In Scnn1a(KO) mice, however, this salt restriction-induced increase in ∆PDamil did not occur, and the circadian rhythm of ∆PDamil was blunted. Plasma and urinary sodium and potassium did not change with regular or high-salt diets or potassium loading in control or Scnn1a(KO) mice. However, Scnn1a(KO) mice fed a low-salt diet lost significant amounts of sodium in their feces and exhibited high plasma aldosterone and increased urinary sodium retention. Mice lacking the CAP1/Prss8 in colonic superficial cells (Prss8(KO)) were viable, without fetal or perinatal lethality. Compared with controls, Prss8(KO) mice fed regular or low-salt diets exhibited significantly reduced ∆PDamil in the afternoon, but the circadian rhythm was maintained. Prss8(KO) mice fed a low-salt diet also exhibited sodium loss through feces and higher plasma aldosterone levels. Thus, we identified CAP1/Prss8 as an in vivo regulator of ENaC in colon. We conclude that, under salt restriction, activation of the renin-angiotensin-aldosterone system in the kidney compensated for the absence of ENaC in colonic surface epithelium, leading to colon-specific pseudohypoaldosteronism type 1 with mineralocorticoid resistance without evidence of impaired potassium balance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND Metastasis of colorectal cancer (CRC) is directly linked to patient survival. We previously identified the novel gene Metastasis Associated in Colon Cancer 1 (MACC1) in CRC and demonstrated its importance as metastasis inducer and prognostic biomarker. Here, we investigate the geographic expression pattern of MACC1 in colorectal adenocarcinoma and tumor buds in correlation with clinicopathological and molecular features for improvement of survival prognosis. METHODS We performed geographic MACC1 expression analysis in tumor center, invasive front and tumor buds on whole tissue sections of 187 well-characterized CRCs by immunohistochemistry. MACC1 expression in each geographic zone was analyzed with Mismatch repair (MMR)-status, BRAF/KRAS-mutations and CpG-island methylation. RESULTS MACC1 was significantly overexpressed in tumor tissue as compared to normal mucosa (p < 0.001). Within colorectal adenocarcinomas, a significant increase of MACC1 from tumor center to front (p = 0.0012) was detected. MACC1 was highly overexpressed in 55% tumor budding cells. Independent of geographic location, MACC1 predicted advanced pT and pN-stages, high grade tumor budding, venous and lymphatic invasion (p < 0.05). High MACC1 expression at the invasive front was decisive for prediction of metastasis (p = 0.0223) and poor survival (p = 0.0217). The geographic pattern of MACC1 did not correlate with MMR-status, BRAF/KRAS-mutations or CpG-island methylation. CONCLUSION MACC1 is differentially expressed in CRC. At the invasive front, MACC1 expression predicts best aggressive clinicopathological features, tumor budding, metastasis formation and poor survival outcome.