32 resultados para T-Kernel

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a kernel density correlation based nonrigid point set matching method and shows its application in statistical model based 2D/3D reconstruction of a scaled, patient-specific model from an un-calibrated x-ray radiograph. In this method, both the reference point set and the floating point set are first represented using kernel density estimates. A correlation measure between these two kernel density estimates is then optimized to find a displacement field such that the floating point set is moved to the reference point set. Regularizations based on the overall deformation energy and the motion smoothness energy are used to constraint the displacement field for a robust point set matching. Incorporating this non-rigid point set matching method into a statistical model based 2D/3D reconstruction framework, we can reconstruct a scaled, patient-specific model from noisy edge points that are extracted directly from the x-ray radiograph by an edge detector. Our experiment conducted on datasets of two patients and six cadavers demonstrates a mean reconstruction error of 1.9 mm

Relevância:

20.00% 20.00%

Publicador:

Resumo:

kdens produces univariate kernel density estimates and graphs the result. kdens supplements official Stata's kdensity. Important additions are: adaptive (i.e. variable bandwidth) kernel density estimation, several automatic bandwidth selectors including the Sheather-Jones plug-in estimator, pointwise variability bands and confidence intervals, boundary correction for variables with bounded domain, fast binned approximation estimation. Note that the moremata package, also available from SSC, is required.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We aimed at assessing stent geometry and in-stent contrast attenuation with 64-slice CT in patients with various coronary stents. Twenty-nine patients (mean age 60 +/- 11 years; 24 men) with 50 stents underwent CT within 2 weeks after stent placement. Mean in-stent luminal diameter and reference vessel diameter proximal and distal to the stent were assessed with CT, and compared to quantitative coronary angiography (QCA). Stent length was also compared to the manufacturer's values. Images were reconstructed using a medium-smooth (B30f) and sharp (B46f) kernel. All 50 stents could be visualized with CT. Mean in-stent luminal diameter was systematically underestimated with CT compared to QCA (1.60 +/- 0.39 mm versus 2.49 +/- 0.45 mm; P < 0.0001), resulting in a modest correlation of QCA versus CT (r = 0.49; P < 0.0001). Stent length as given by the manufacturer was 18.2 +/- 6.2 mm, correlating well with CT (18.5 +/- 5.7 mm; r = 0.95; P < 0.0001) and QCA (17.4 +/- 5.6 mm; r = 0.87; P < 0.0001). Proximal and distal reference vessel diameters were similar with CT and QCA (P = 0.06 and P = 0.03). B46f kernel images showed higher image noise (P < 0.05) and lower in-stent CT attenuation values (P < 0.001) than images reconstructed with the B30f kernel. 64-slice CT allows measurement of coronary artery in-stent density, and significantly underestimates the true in-stent diameter compared to QCA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A previously presented algorithm for the reconstruction of bremsstrahlung spectra from transmission data has been implemented into MATHEMATICA. Spectra vectorial algebra has been used to solve the matrix system A * F = T. The new implementation has been tested by reconstructing photon spectra from transmission data acquired in narrow beam conditions, for nominal energies of 6, 15, and 25 MV. The results were in excellent agreement with the original calculations. Our implementation has the advantage to be based on a well-tested mathematical kernel. Furthermore it offers a comfortable user interface.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Constructing a 3D surface model from sparse-point data is a nontrivial task. Here, we report an accurate and robust approach for reconstructing a surface model of the proximal femur from sparse-point data and a dense-point distribution model (DPDM). The problem is formulated as a three-stage optimal estimation process. The first stage, affine registration, is to iteratively estimate a scale and a rigid transformation between the mean surface model of the DPDM and the sparse input points. The estimation results of the first stage are used to establish point correspondences for the second stage, statistical instantiation, which stably instantiates a surface model from the DPDM using a statistical approach. This surface model is then fed to the third stage, kernel-based deformation, which further refines the surface model. Handling outliers is achieved by consistently employing the least trimmed squares (LTS) approach with a roughly estimated outlier rate in all three stages. If an optimal value of the outlier rate is preferred, we propose a hypothesis testing procedure to automatically estimate it. We present here our validations using four experiments, which include 1 leave-one-out experiment, 2 experiment on evaluating the present approach for handling pathology, 3 experiment on evaluating the present approach for handling outliers, and 4 experiment on reconstructing surface models of seven dry cadaver femurs using clinically relevant data without noise and with noise added. Our validation results demonstrate the robust performance of the present approach in handling outliers, pathology, and noise. An average 95-percentile error of 1.7-2.3 mm was found when the present approach was used to reconstruct surface models of the cadaver femurs from sparse-point data with noise added.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Correspondence establishment is a key step in statistical shape model building. There are several automated methods for solving this problem in 3D, but they usually can only handle objects with simple topology, like that of a sphere or a disc. We propose an extension to correspondence establishment over a population based on the optimization of the minimal description length function, allowing considering objects with arbitrary topology. Instead of using a fixed structure of kernel placement on a sphere for the systematic manipulation of point landmark positions, we rely on an adaptive, hierarchical organization of surface patches. This hierarchy can be built on surfaces of arbitrary topology and the resulting patches are used as a basis for a consistent, multi-scale modification of the surfaces' parameterization, based on point distribution models. The feasibility of the approach is demonstrated on synthetic models with different topologies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As object-oriented languages are extended with novel modularization mechanisms, better underlying models are required to implement these high-level features. This paper describes CELL, a language model that builds on delegation-based chains of object fragments. Composition of groups of cells is used: 1) to represent objects, 2) to realize various forms of method lookup, and 3) to keep track of method references. A running prototype of CELL is provided and used to realize the basic kernel of a Smalltalk system. The paper shows, using several examples, how higher-level features such as traits can be supported by the lower-level model.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Given a reproducing kernel Hilbert space (H,〈.,.〉)(H,〈.,.〉) of real-valued functions and a suitable measure μμ over the source space D⊂RD⊂R, we decompose HH as the sum of a subspace of centered functions for μμ and its orthogonal in HH. This decomposition leads to a special case of ANOVA kernels, for which the functional ANOVA representation of the best predictor can be elegantly derived, either in an interpolation or regularization framework. The proposed kernels appear to be particularly convenient for analyzing the effect of each (group of) variable(s) and computing sensitivity indices without recursivity.