14 resultados para Systems analysis.
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
For acutely lethal influenza infections, the relative pathogenic contributions of direct viral damage to lung epithelium versus dysregulated immunity remain unresolved. Here, we take a top-down systems approach to this question. Multigene transcriptional signatures from infected lungs suggested that elevated activation of inflammatory signaling networks distinguished lethal from sublethal infections. Flow cytometry and gene expression analysis involving isolated cell subpopulations from infected lungs showed that neutrophil influx largely accounted for the predictive transcriptional signature. Automated imaging analysis, together with these gene expression and flow data, identified a chemokine-driven feedforward circuit involving proinflammatory neutrophils potently driven by poorly contained lethal viruses. Consistent with these data, attenuation, but not ablation, of the neutrophil-driven response increased survival without changing viral spread. These findings establish the primacy of damaging innate inflammation in at least some forms of influenza-induced lethality and provide a roadmap for the systematic dissection of infection-associated pathology.
Resumo:
The immune system exhibits an enormous complexity. High throughput methods such as the "-omic'' technologies generate vast amounts of data that facilitate dissection of immunological processes at ever finer resolution. Using high-resolution data-driven systems analysis, causal relationships between complex molecular processes and particular immunological phenotypes can be constructed. However, processes in tissues, organs, and the organism itself (so-called higher level processes) also control and regulate the molecular (lower level) processes. Reverse systems engineering approaches, which focus on the examination of the structure, dynamics and control of the immune system, can help to understand the construction principles of the immune system. Such integrative mechanistic models can properly describe, explain, and predict the behavior of the immune system in health and disease by combining both higher and lower level processes. Moving from molecular and cellular levels to a multiscale systems understanding requires the development of methodologies that integrate data from different biological levels into multiscale mechanistic models. In particular, 3D imaging techniques and 4D modeling of the spatiotemporal dynamics of immune processes within lymphoid tissues are central for such integrative approaches. Both dynamic and global organ imaging technologies will be instrumental in facilitating comprehensive multiscale systems immunology analyses as discussed in this review.
Resumo:
Despite ubiquitous digitisation and the advent of Digital Rights Management Systems, it seems that collecting societies are not quite yet six feet under. Even in a world of rapid technological developments collecting societies will keep providing services to authors, users and the public facilitating the management of rights and performing additionally certain important social and cultural functions. However, agreeing on the future of collecting societies and on the particular design of both individual and collective rights administration is not an easy task and the opinions of the major stakeholders are diverse and often conflicting.
Resumo:
The design of a high-density neural recording system targeting epilepsy monitoring is presented. Circuit challenges and techniques are discussed to optimize the amplifier topology and the included OTA. A new platform supporting active recording devices targeting wireless and high-resolution focus localization in epilepsy diagnosis is also proposed. The post-layout simulation results of an amplifier dedicated to this application are presented. The amplifier is designed in a UMC 0.18µm CMOS technology, has an NEF of 2.19 and occupies a silicon area of 0.038 mm(2), while consuming 5.8 µW from a 1.8-V supply.
Resumo:
Software metrics offer us the promise of distilling useful information from vast amounts of software in order to track development progress, to gain insights into the nature of the software, and to identify potential problems. Unfortunately, however, many software metrics exhibit highly skewed, non-Gaussian distributions. As a consequence, usual ways of interpreting these metrics --- for example, in terms of "average" values --- can be highly misleading. Many metrics, it turns out, are distributed like wealth --- with high concentrations of values in selected locations. We propose to analyze software metrics using the Gini coefficient, a higher-order statistic widely used in economics to study the distribution of wealth. Our approach allows us not only to observe changes in software systems efficiently, but also to assess project risks and monitor the development process itself. We apply the Gini coefficient to numerous metrics over a range of software projects, and we show that many metrics not only display remarkably high Gini values, but that these values are remarkably consistent as a project evolves over time.
Resumo:
BACKGROUND Neuronavigation has become an intrinsic part of preoperative surgical planning and surgical procedures. However, many surgeons have the impression that accuracy decreases during surgery. OBJECTIVE To quantify the decrease of neuronavigation accuracy and identify possible origins, we performed a retrospective quality-control study. METHODS Between April and July 2011, a neuronavigation system was used in conjunction with a specially prepared head holder in 55 consecutive patients. Two different neuronavigation systems were investigated separately. Coregistration was performed with laser-surface matching, paired-point matching using skin fiducials, anatomic landmarks, or bone screws. The initial target registration error (TRE1) was measured using the nasion as the anatomic landmark. Then, after draping and during surgery, the accuracy was checked at predefined procedural landmark steps (Mayfield measurement point and bone measurement point), and deviations were recorded. RESULTS After initial coregistration, the mean (SD) TRE1 was 2.9 (3.3) mm. The TRE1 was significantly dependent on patient positioning, lesion localization, type of neuroimaging, and coregistration method. The following procedures decreased neuronavigation accuracy: attachment of surgical drapes (DTRE2 = 2.7 [1.7] mm), skin retractor attachment (DTRE3 = 1.2 [1.0] mm), craniotomy (DTRE3 = 1.0 [1.4] mm), and Halo ring installation (DTRE3 = 0.5 [0.5] mm). Surgery duration was a significant factor also; the overall DTRE was 1.3 [1.5] mm after 30 minutes and increased to 4.4 [1.8] mm after 5.5 hours of surgery. CONCLUSION After registration, there is an ongoing loss of neuronavigation accuracy. The major factors were draping, attachment of skin retractors, and duration of surgery. Surgeons should be aware of this silent loss of accuracy when using neuronavigation.
Resumo:
In this article we present a computational framework for isolating spatial patterns arising in the steady states of reaction-diffusion systems. Such systems have been used to model many different phenomena in areas such as developmental and cancer biology, cell motility and material science. Often one is interested in identifying parameters which will lead to a particular pattern. To attempt to answer this, we compute eigenpairs of the Laplacian on a variety of domains and use linear stability analysis to determine parameter values for the system that will lead to spatially inhomogeneous steady states whose patterns correspond to particular eigenfunctions. This method has previously been used on domains and surfaces where the eigenvalues and eigenfunctions are found analytically in closed form. Our contribution to this methodology is that we numerically compute eigenpairs on arbitrary domains and surfaces. Here we present various examples and demonstrate that mode isolation is straightforward especially for low eigenvalues. Additionally we see that if two or more eigenvalues are in a permissible range then the inhomogeneous steady state can be a linear combination of the respective eigenfunctions. Finally we show an example which suggests that pattern formation is robust on similar surfaces in cases that the surface either has or does not have a boundary.