40 resultados para System of systems

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Endocrine disruption, in particular disruption by estrogen-active compounds, has been identified as an important ecotoxicological hazard in the aquatic environment. Research on the impact of endocrine disrupting compounds (EDCs) on wildlife has focused on disturbances of the reproductive system. However, there is increasing evidence that EDCs affect a variety of physiological systems other than the reproductive system. Here, we discuss if EDCs may be able to affect the immune system of fish, as this would have direct implications for individual fitness and population growth. Evidence suggesting an immunomodulatory role of estrogens in fish comes from the following findings: (a) estrogen receptors are expressed in piscine immune organs, (b) immune gene expression is modulated by estrogen exposure, and (c) pathogen susceptibility of fish increases under estrogen exposure.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Spiders, as all other arthropods, have an open circulatory system, and their body fluid, the hemolymph, freely moves between lymphatic vessels and the body cavities (see Wirkner and Huckstorf 2013). The hemolymph can be considered as a multifunctional organ, central for locomotion (Kropf 2013), respiration (Burmester 2013) and nutrition, and it amounts to approximately 20 % of a spider’s body weight. Any injury includes not only immediate hemolymph loss but also pathogen attacks and subsequent infections. Therefore spiders have to react to injuries in a combined manner to stop fluid loss and to defend against microbial invaders. This is achieved by an innate immune system which involves several host defence systems such as hemolymph coagulation and the production of a variety of defensive substances (Fukuzawa et al.2008). In spiders, the immune system is localised in hemocytes which are derived from the myocardium cells of the heart wall where they are produced as prohemocytes and from where they are released as different cell types into the hemolymph (Seitz 1972). They contribute to the defence against pathogens by phagocytosis, nodulation and encapsulation of invaders. The humoral response includes mechanisms which induce melanin production to destroy pathogens, a clotting cascade to stop hemolymph loss and the constitutive production of several types of antimicrobial peptides, which are stored in hemocyte granules and released into the hemolymph (Fukuzawa et al.2008) (Fig.7.1). The immune system of spiders is an innate immune system. It is hemolymph-based and characterised by a broad but not very particular specificity. Its advantage is a fast response within minutes to a few hours. This is in contrast to the adaptive immune system of vertebrates which can react to very specific pathogens, thus resulting in much more specific responses. Moreover, it creates an immunological memory during the lifetime of the species. The disadvantage is that it needs more time to react with antibody production, usually many hours to a few days, and needs to be built up during early ontogenesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is increasing recognition that transdisciplinary approaches are needed to create suitable knowledge for sustainable water management. However, there is no common understanding of what transdisciplinary research may be and there is very limited debate on potentials and challenges regarding its implementation. Against this background, this paper presents a conceptual framework for transdisciplinary co-production of knowledge in water management projects oriented towards more sustainable use of water. Moreover, first experiences with its implementation are discussed. In so doing, the focus lies on potentials and challenges related to the co-production of systems, target and transformation knowledge by researchers and local stakeholders.