77 resultados para Synthèse de ligand

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previous work has shown that the -tocopherol transfer protein ( -TTP) can bind to vesicular or immobilized phospholipid membranes. Revealing the molecular mechanisms by which -TTP associates with membranes is thought to be critical to understanding its function and role in the secretion of tocopherol from hepatocytes into the circulation. Calculations presented in the Orientations of Proteins in Membranes database have provided a testable model for the spatial arrangement of -TTP and other CRAL-TRIO family proteins with respect to the lipid bilayer. These calculations predicted that a hydrophobic surface mediates the interaction of -TTP with lipid membranes. To test the validity of these predictions, we used site-directed mutagenesis and examined the substituted mutants with regard to intermembrane ligand transfer, association with lipid layers and biological activity in cultured hepatocytes. Substitution of residues in helices A8 (F165A and F169A) and A10 (I202A, V206A and M209A) decreased the rate of intermembrane ligand transfer as well as protein adsorption to phospholipid bilayers. The largest impairment was observed upon mutation of residues that are predicted to be fully immersed in the lipid bilayer in both apo (open) and holo (closed) conformations such as Phe165 and Phe169. Mutation F169A, and especially F169D, significantly impaired -TTP-assisted secretion of -tocopherol outside cultured hepatocytes. Mutation of selected basic residues (R192H, K211A, and K217A) had little effect on transfer rates, indicating no significant involvement of nonspecific electrostatic interactions with membranes.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A prospective, randomized, placebo-controlled study was conducted in a baboon model to determine if a thiazolidinedione agonist of peroxisome proliferator-activated receptor-gamma, pioglitazone, can impede the development of endometriosis. Endometriosis was induced using laparoscopic, intrapelvic injection of eutopic menstrual endometrium, previously incubated with placebo or pioglitazone for 30 min, in 12 female baboons with a normal pelvis that had undergone at least one menstrual cycle since the time of captivity. At this point, the 12 baboons were randomized into two groups and treated from the day of induction. They received either PBS tablets (n = 6, placebo control, placebo tablets once a day by mouth) or pioglitazone (n = 6, test drug, 7.5 mg by mouth each day). A second and final laparoscopy was performed in the baboons to record the extent of endometriotic lesions between 24 and 42 d after induction (no difference in length of treatment between the two groups, P = 0.38). A videolaparoscopy was performed to document the number and surface area of endometriotic lesions. The surface area and volume of endometriotic lesions were significantly lower in pioglitazone treated baboons than the placebo group (surface area, 48.6 vs. 159.0 mm(2), respectively, P = 0.049; vol, 23.7 vs. 131.8 mm(3), respectively, P = 0.041). The surface area (3.5 vs. 17.8 mm(2), P = 0.017, pioglizatone vs. placebo) and overall number (1.5 vs. 9.5, P = 0.007, pioglizatone vs. placebo) of red lesions were lower in the pioglitazone group. A peroxisome proliferator-activated receptor-gamma ligand, pioglitazone, effectively reduced the initiation of endometriotic disease in the baboon endometriosis model. Using this animal model, we have shown that thiazolidinedione is a promising drug for preventive treatment of endometriosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Peroxisome proliferator-activated receptor ? (PPAR?) is a transcription factor that promotes differentiation and cell survival in the stomach. PPAR? upregulates and interacts with caveolin-1 (Cav1), a scaffold protein of Ras/mitogen-activated protein kinases (MAPKs). The cytoplasmic-to-nuclear localization of PPAR? is altered in gastric cancer (GC) patients, suggesting a so-far-unknown role for Cav1 in spatial regulation of PPAR? signaling. We show here that loss of Cav1 accelerated proliferation of normal stomach and GC cells in vitro and in vivo. Downregulation of Cav1 increased Ras/MAPK-dependent phosphorylation of serine 84 in PPAR? and enhanced nuclear translocation and ligand-independent transcription of PPAR? target genes. In contrast, Cav1 overexpression sequestered PPAR? in the cytosol through interaction of the Cav1 scaffolding domain (CSD) with a conserved hydrophobic motif in helix 7 of PPAR?'s ligand-binding domain. Cav1 cooperated with the endogenous Ras/MAPK inhibitor docking protein 1 (Dok1) to promote the ligand-dependent transcriptional activity of PPAR? and to inhibit cell proliferation. Ligand-activated PPAR? also reduced tumor growth and upregulated the Ras/MAPK inhibitors Cav1 and Dok1 in a murine model of GC. These results suggest a novel mechanism of PPAR? regulation by which Ras/MAPK inhibitors act as scaffold proteins that sequester and sensitize PPAR? to ligands, limiting proliferation of gastric epithelial cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inhibiting the α4 subunit of the integrin heterodimers α4β1 and α4β7 with the mab natalizumab is an effective treatment of multiple sclerosis (MS). Which of the two α4 heterodimers is involved in disease pathogenesis has, however, remained controversial. Whereas the development of experimental autoimmune encephalomyelitis (EAE), an animal model of MS, is ameliorated in β7-integrin-deficient C57BL/6 mice, neutralizing antibodies against the β7-integrin subunit or the α4β7-integrin heterodimer fail to interfere with EAE pathogenesis in the SJL mouse. To facilitate α4β7-integrin-mediated immune-cell trafficking across the blood-brain barrier (BBB), we established transgenic C57BL/6 mice with endothelial cell-specific, inducible expression of the α4β7-integrin ligand mucosal addressin cell adhesion molecule (MAdCAM)-1 using the tetracycline (TET)-OFF system. Although TET-regulated MAdCAM-1 induced α4β7-integrin mediated interaction of α4β7(+) /α4β1(-) T cells with the BBB in vitro and in vivo, it failed to influence EAE pathogenesis in C57BL/6 mice. TET-regulated MAdCAM-1 on the BBB neither changed the localization of central nervous system (CNS) perivascular inflammatory cuffs nor did it enhance the percentage of α4β7-integrin(+) inflammatory cells within the CNS during EAE. In conclusion, our study demonstrates that ectopic expression of MAdCAM-1 at the BBB does not increase α4β7-integrin-mediated immune cell trafficking into the CNS during MOG(aa35-55)-induced EAE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

W5.43(194), a conserved tryptophan residue among G-protein coupled receptors (GPCRs) and cannabinoid receptors (CB), was examined in the present report for its significance in CB2 receptor ligand binding and adenylyl cyclase (AC) activity. Computer modeling postulates that this site in CB2 may be involved in the affinity of WIN55212-2 and SR144528 through aromatic contacts. In the present study, we reported that a CB2 receptor mutant, W5.43(194)Y, which had a tyrosine (Y) substitution for tryptophan (W), retained the binding affinity for CB agonist CP55940, but reduced binding affinity for CB2 agonist WIN55212-2 and inverse agonist SR144528 by 8-fold and 5-fold, respectively; the CB2 W5.43(194)F and W5.43(194)A mutations significantly affect the binding activities of CP55940, WIN55212-2 and SR144528. Furthermore, we found that agonist-mediated inhibition of the forskolin-induced cAMP production was dramatically diminished in the CB2 mutant W5.43(194)Y, whereas W5.43(194)F and W5.43(194)A mutants resulted in complete elimination of downstream signaling, suggesting that W5.43(194) was essential for the full activation of CB2. These results indicate that both aromatic interaction and hydrogen bonding are involved in ligand binding for the residue W5.43(194), and the mutations of this tryptophan site may affect the conformation of the ligand binding pocket and therefore control the active conformation of the wild type CB2 receptor. W5.43(194)Y/F/A mutations also displayed noticeable enhancement of the constitutive activation probably attributed to the receptor conformational changes resulted from the mutations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report a detailed physical analysis on a family of isolated, antiferro-magnetically (AF) coupled, chromium(III) finite chains, of general formula (Cr(RCO(2))(2)F)(n) where the chain length n = 6 or 7. Additionally, the chains are capped with a selection of possible terminating ligands, including hfac (= 1,1,1,5,5,5-hexafluoropentane-2,4-dionate(1-)), acac (= pentane-2,4-dionate(1-)) or (F)(3). Measurements by inelastic neutron scattering (INS), magnetometery and electron paramagnetic resonance (EPR) spectroscopy have been used to study how the electronic properties are affected by n and capping ligand type. These comparisons allowed the subtle electronic effects the choice of capping ligand makes for odd member spin 3/2 ground state and even membered spin 0 ground state chains to be investigated. For this investigation full characterisation of physical properties have been performed with spin Hamiltonian parameterisation, including the determination of Heisenberg exchange coupling constants and single ion axial and rhombic anisotropy. We reveal how the quantum spin energy levels of odd or even membered chains can be modified by the type of capping ligand terminating the chain. Choice of capping ligands enables Cr-Cr exchange coupling to be adjusted by 0, 4 or 24%, relative to Cr-Cr exchange coupling within the body of the chain, by the substitution of hfac, acac or (F)(3) capping ligands to the ends of the chain, respectively. The manipulation of quantum spin levels via ligands which play no role in super-exchange, is of general interest to the practise of spin Hamilton modelling, where such second order effects are generally not considered of relevance to magnetic properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The explorative coordination chemistry of the bridging ligand TTF-PPB is presented. Its strong binding ability to Co(II) and then to Ni(II) or Cu(II) in the presence of hexafluoroacetylacetonate (hfac(-)), forming new mono-and dinuclear complexes 1-3, is described. X-ray crystallographic studies have been conducted in the case of the free ligand TTF-PPB as well as its complexes [Co(TTF-PPB)(hfac)(2)] (1) and [Co(hfac)(2)(mu-TTF-PPB)Ni(hfac)(2)] (2). Each metal ion is bonded to two bidentate hfac-anions through their oxygen atoms and two nitrogen atoms of the PPB moiety with a distorted octahedral coordination geometry. Specifically, nitrogen donor atoms of TTF-PPB adopt a cis-coordination but not in the equatorial plane, which is quite rare. Electronic absorption, photoinduced intraligand charge transfer ((1)ILCT), and electrochemical behaviour of 1-3 have been investigated. UV-Vis spectroscopy shows very strong bands in the UV region consistent with ligand centred pi-pi* transitions and an intense broad band in the visible region corresponding to a spin-allowed pi-pi* (1)ILCT transition. Upon coordination, the (1)ILCT band is bathochromically shifted by 3100, 6100 and 5900 cm(-1) on going from 1 to 3. The electrochemical studies reveal that all of them undergo two reversible oxidation and one reversible reduction processes, ascribed to the successive oxidations of the TTF moiety and the reduction of the PPB unit, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The synthesis and the photophysical properties of the complex [Ru(TTF-dppz)(2)(Aqphen)](2+) (TTF = tetrathiafulvalene, dppz = dipyrido-[3,2-a:2',3'-c]phenazine, Aqphen = anthraquinone fused to phenanthroline via a pyrazine bridge) are described. In this molecular triad excitation into the metal ligand charge transfer bands results in the creation of a long-lived charge separated state with TTF acting as electron donor and anthraquinone as terminal acceptor. The lifetime of the charge-separated state is 400 ns in dichloromethane at room temperature. A mechanism for the charge separation involving an intermediate charge-separated state is proposed based on transient absorption spectroscopy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Meprinα, an astacin-type metalloprotease is overexpressed in colorectal cancer cells and is secreted in a non-polarized fashion, leading to the accumulation of meprinα in the tumor stroma. The transition from normal colonocytes to colorectal cancer correlates with increased meprinα activity at primary tumor sites. A role for meprinα in invasion and metastatic dissemination is supported by its pro-angiogenic and pro-migratory activity. In the present study, we provide evidence for a meprinα-mediated transactivation of the EGFR signaling pathway and suggest that this mechanism is involved in colorectal cancer progression. Using alkaline phosphatase-tagged EGFR ligands and an ELISA assay, we demonstrate that meprinα is capable of shedding epidermal growth factor (EGF) and transforming growth factor-α (TGFα) from the plasma membrane. Shedding was abrogated using actinonin, an inhibitor for meprinα. The physiological effects of meprinα-mediated shedding of EGF and TGFα were investigated with human colorectal adenocarcinoma cells (Caco-2). Proteolytically active meprinα leads to an increase in EGFR and ERK1/2 phosphorylation and subsequently enhances cell proliferation and migration. In conclusion, the implication of meprinα in the EGFR/MAPK signaling pathway indicates a role of meprinα in colorectal cancer progression.

Relevância:

20.00% 20.00%

Publicador: