19 resultados para Symmetric Gaps

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this clinical trial was to determine the active tactile sensibility of natural teeth and to obtain a statistical analysis method fitting a psychometric function through the observed data points. On 68 complete dentulous test persons (34 males, 34 females, mean age 45.9 ± 16.1 years), one pair of healthy natural teeth each was tested: n = 24 anterior teeth and n = 44 posterior teeth. The computer-assisted, randomized measurement was done by having the subjects bite on thin copper foils of different thickness (5-200 µm) inserted between the teeth. The threshold of active tactile sensibility was defined by the 50% value of correct answers. Additionally, the gradient of the sensibility curve and the support area (90-10% value) as a description of the shape of the sensibility curve were calculated. For modeling the sensibility curve, symmetric and asymmetric functions were used. The mean sensibility threshold was 14.2 ± 12.1 µm. The older the subject, the higher the tactile threshold (r = 0.42, p = 0.0006). The support area was 41.8 ± 43.3 µm. The higher the 50% threshold, the smaller the gradient of the curve and the larger the support area. The curves showing the active tactile sensibility of natural teeth demonstrate a tendency towards asymmetry, so that the active tactile sensibility of natural teeth can mathematically best be described by using the asymmetric Weibull function.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Today's pulsed THz sources enable us to excite, probe, and coherently control the vibrational or rotational dynamics of organic and inorganic materials on ultrafast time scales. Driven by standard laser sources THz electric field strengths of up to several MVm−1 have been reported and in order to reach even higher electric field strengths the use of dedicated electric field enhancement structures has been proposed. Here, we demonstrate resonant electric field enhancement structures, which concentrate the incident electric field in sub-diffraction size volumes and show an electric field enhancement as high as ~14,000 at 50 GHz. These values have been confirmed through a combination of near-field imaging experiments and electromagnetic simulations.