5 resultados para Swiss albino mice

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND AND PURPOSE 4'-O-methylhonokiol (MH) is a natural product showing anti-inflammatory, anti-osteoclastogenic, and neuroprotective effects. MH was reported to modulate cannabinoid CB2 receptors as an inverse agonist for cAMP production and an agonist for intracellular [Ca2+]. It was recently shown that MH inhibits cAMP formation via CB2 receptors. In this study, the exact modulation of MH on CB2 receptor activity was elucidated and its endocannabinoid substrate-specific inhibition (SSI) of cyclooxygenase-2 (COX-2) and CNS bioavailability are described for the first time. METHODS CB2 receptor modulation ([35S]GTPγS, cAMP, and β-arrestin) by MH was measured in hCB2-transfected CHO-K1 cells and native conditions (HL60 cells and mouse spleen). The COX-2 SSI was investigated in RAW264.7 cells and in Swiss albino mice by targeted metabolomics using LC-MS/MS. RESULTS MH is a CB2 receptor agonist and a potent COX-2 SSI. It induced partial agonism in both the [35S]GTPγS binding and β-arrestin recruitment assays while being a full agonist in the cAMP pathway. MH selectively inhibited PGE2 glycerol ester formation (over PGE2) in RAW264.7 cells and significantly increased the levels of 2-AG in mouse brain in a dose-dependent manner (3 to 20 mg kg(-1)) without affecting other metabolites. After 7 h from intraperitoneal (i.p.) injection, MH was quantified in significant amounts in the brain (corresponding to 200 to 300 nM). CONCLUSIONS LC-MS/MS quantification shows that MH is bioavailable to the brain and under condition of inflammation exerts significant indirect effects on 2-AG levels. The biphenyl scaffold might serve as valuable source of dual CB2 receptor modulators and COX-2 SSIs as demonstrated by additional MH analogs that show similar effects. The combination of CB2 agonism and COX-2 SSI offers a yet unexplored polypharmacology with expected synergistic effects in neuroinflammatory diseases, thus providing a rationale for the diverse neuroprotective effects reported for MH in animal models.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Human African trypanosomiasis is prevalent in Sub-sahara African countries that lie between 14° North and 29° south of the equator. Sixty million people are at risk of infection. Trypanosoma brucei gambesience occurs in West and Central Africa while Trypanosoma brucei rhodesience occurs in East and Southern Africa. The neurological stage of the disease is characterized by neuroinflammation. About 10% of patients treated with the recommended drug, melarsoprol develop post treatment reactive encephalopathy, which is fatal in 50% of these patients, thus melarsoprol is fatal in 5% of all treated patients. This study was aimed at establishing the potential activity of Erythrina abyssinica in reducing neuroinflammation following infection with Trypanosoma brucei brucei. Swiss white mice were divided into ten groups, two control groups and eight infected groups. Infected mice received either methanol or water extract of Erythrina abyssinica at 12.5, 25, 50 or 100 mg/kg body weight. Parasite counts were monitored in peripheral circulation from the third day post infection up to the end of the study. Brains were processed for histology, immunohistochemistry scanning and transmission electron microscopy. Following infection, trypanosomes were observed in circulation 3 days post-infection, with the parasitaemia occurring in waves. In the cerebrum, typical brain pathology of chronic trypanosomiasis was reproduced. This was exhibited as astrocytosis, perivascular cuffing and infiltration of inflammatory cells into the neuropil. However, mice treated with Erythrina abyssinica water extract exhibited significant reduction in perivascular cuffing, lymphocytic infiltration and astrocytosis in the cerebrum. The methanol extract did not have a significant difference compared to the non-treated group. This study provides evidence of anti-inflammatory properties of Erythrina abyssinica and may support its wide use as a medicinal plant by various communities in Kenya.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Free-living amoebae (FLA) belonging to Acanthamoeba spp., Naegleria fowleri, Balamuthia mandrillaris, and Sappinia pedata are known to cause infections in humans and animals leading to severe brain pathologies. Worldwide, warm aquatic environments have been found to be suitable habitats for pathogenic FLA. The present study reports on screening for potentially pathogenic FLA in four hot spring resorts in Switzerland. Water samples were taken from water filtration units and from the pools, respectively. Amoebae isolated from samples taken during, or before, the filtration process were demonstrated to be morphologically and phylogenetically related to Stenoamoeba sp., Hartmannella vermiformis, Echinamoeba exundans, and Acanthamoeba healyi. With regard to the swimming pools, FLA were isolated only in one resort, and the isolate was identified as non-pathogenic and as related to E. exundans. Further investigations showed that the isolates morphologically and phylogenetically related to A. healyi displayed a pronounced thermotolerance, and exhibited a marked in vitro cytotoxicity upon 5-day exposure to murine L929 fibroblasts. Experimental intranasal infection of Rag2-immunodeficient mice with these isolates led to severe brain pathologies, and viable trophozoites were isolated from the nasal mucosa, brain tissue, and lungs post mortem. In summary, isolates related to A. healyi were suggestive of being potentially pathogenic to immunocompromised persons. However, the presence of these isolates was limited to the filtration units, and an effective threat for health can therefore be excluded.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Early prenatal diagnosis and in utero therapy of certain fetal diseases have the potential to reduce fetal morbidity and mortality. The intrauterine transplantation of stem cells provides in some instances a therapeutic option before definitive organ failure occurs. Clinical experiences show that certain diseases, such as immune deficiencies or inborn errors of metabolism, can be successfully treated using stem cells derived from bone marrow. However, a remaining problem is the low level of engraftment that can be achieved. Efforts are made in animal models to optimise the graft and study the recipient's microenvironment to increase long-term engraftment levels. Our experiments in mice show similar early homing of allogeneic and xenogeneic stem cells and reasonable early engraftment of allogeneic murine fetal liver cells (17.1% donor cells in peripheral blood 4 weeks after transplantation), whereas xenogeneic HSC are rapidly diminished due to missing self-renewal and low differentiation capacities in the host's microenvironment. Allogeneic murine fetal liver cells have very good long-term engraftment (49.9% donor cells in peripheral blood 16 weeks after transplantation). Compared to the rodents, the sheep model has the advantage of body size and gestation comparable to the human fetus. Here, ultrasound-guided injection techniques significantly decreased fetal loss rates. In contrast to the murine in utero model, the repopulation capacities of allogeneic ovine fetal liver cells are lower (0.112% donor cells in peripheral blood 3 weeks after transplantation). The effect of MHC on engraftment levels seems to be marginal, since no differences could be observed between autologous and allogeneic transplantation (0.117% donor cells vs 0.112% donor cells in peripheral blood 1 to 2 weeks after transplantation). Further research is needed to study optimal timing and graft composition as well as immunological aspects of in utero transplantation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: nitric oxide (NO) plays an important role in the regulation of cardiovascular and glucose homeostasis. Mice lacking the gene encoding the neuronal isoform of nitric oxide synthase (nNOS) are insulin-resistant, but the underlying mechanism is unknown. nNOS is expressed in skeletal muscle tissue where it may regulate glucose uptake. Alternatively, nNOS driven NO synthesis may facilitate skeletal muscle perfusion and substrate delivery. Finally, nNOS dependent NO in the central nervous system may facilitate glucose disposal by decreasing sympathetic nerve activity. METHODS: in nNOS null and control mice, we studied whole body glucose uptake and skeletal muscle blood flow during hyperinsulinaemic clamp studies in vivo and glucose uptake in skeletal muscle preparations in vitro. We also examined the effects of alpha-adrenergic blockade (phentolamine) on glucose uptake during the clamp studies. RESULTS: as expected, the glucose infusion rate during clamping was roughly 15 percent lower in nNOS null than in control mice (89 (17) vs 101 (12) [-22 to -2]). Insulin stimulation of muscle blood flow in vivo, and intrinsic muscle glucose uptake in vitro, were comparable in the two groups. Phentolamine, which had no effect in the wild-type mice, normalised the insulin sensitivity in the mice lacking the nNOS gene. CONCLUSIONS: insulin resistance in nNOS null mice was not related to defective insulin stimulation of skeletal muscle perfusion and substrate delivery or insulin signaling in the skeletal muscle cell, but to a sympathetic alpha-adrenergic mechanism.