9 resultados para Sustained-release

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

70.00% 70.00%

Publicador:

Resumo:

BACKGROUND Platelet-rich concentrates are used as a source of growth factors to improve the healing process. The diverse preparation protocols and the gaps in knowledge of their biological properties complicate the interpretation of clinical results. QUESTIONS/PURPOSES In this study we aimed to (1) analyze the concentration and kinetics of growth factors released from leukocyte- and platelet-rich fibrin (L-PRF), leukocyte- and platelet-rich plasma (L-PRP), and natural blood clot during in vitro culture; (2) investigate the migration of mesenchymal stem cells (MSCs) and human umbilical vein endothelial cells (HUVECs) as a functional response to the factors released; and (3) uncover correlations between individual growth factors with the initial platelet/leukocyte counts or the induced cell migration. METHODS L-PRF, L-PRP, and natural blood clot prepared from 11 donors were cultured in vitro for 28 days and media supernatants collected after 8 hours and 1, 3, 7, 14, and 28 days. Released transforming growth factor β1 (TGF-β1), vascular endothelial growth factor (VEGF), insulin growth factor (IGF-1), platelet-derived growth factor AB (PDGF-AB), and interleukin-1β (IL-1β) were measured in the supernatants with enzyme-linked immunosorbent assay. Migration of MSC and HUVEC induced by the supernatants was evaluated in Boyden chambers. RESULTS More TGF-ß1 was released (mean ± SD in pg/mL of blood) from L-PRF (37,796 ± 5492) compared with L-PRP (23,738 ± 6848; p < 0.001) and blood clot (3739 ± 4690; p < 0.001), whereas more VEGF and IL-1ß were released from blood clot (1933 ± 704 and 2053 ± 908, respectively) compared with both L-PRP (642 ± 208; p < 0.001 and 273 ± 386; p < 0.001, respectively) and L-PRF (852 ± 376; p < 0.001 and 65 ± 56, p < 0.001, respectively). No differences were observed in IGF-1 and PDGF-AB released from any of the concentrates. TGF-β1 release peaked at Day 7 in L-PRF and at 8 hours and Day 7 in L-PRP and 8 hours and Day 14 in blood clot. In all concentrates, main release of VEGF occurred between 3 and 7 days and of IL-1β between Days 1 and 7. IGF-1 and PDGF-AB were released until Day 1 in L-PRP and blood clot, in contrast to sustained release over the first 3 days in L-PRF. The strongest migration of MSC occurred in response to L-PRF, and more HUVEC migration was seen in L-PRF and blood clot compared with L-PRP. TGF-β1 correlated with initial platelet counts in L-PRF (Pearson r = 0.66, p = 0.0273) and initial leukocyte counts in L-PRP (Pearson r = 0.83, p = 0.0016). A positive correlation of IL-1β on migration of MSC and HUVEC was revealed (Pearson r = 0.16, p = 0.0208; Pearson r = 0.31, p < 0.001). CONCLUSIONS In comparison to L-PRP, L-PRF had higher amounts of released TGF-β1, a long-term release of growth factors, and stronger induction of cell migration. Future preclinical studies should confirm these data in a defined injury model. CLINICAL RELEVANCE By characterizing the biologic properties of different platelet concentrates in vitro, we may gain a better understanding of their clinical effects and develop guidelines for specific future applications.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Bone formation and osseointegration of biomaterials are dependent on angiogenesis and vascularization. Angiogenic growth factors such as vascular endothelial growth factor (VEGF) were shown to promote biomaterial vascularization and enhance bone formation. However, high local concentrations of VEGF induce the formation of malformed, nonfunctional vessels. We hypothesized that a continuous delivery of low concentrations of VEGF from calcium phosphate ceramics may increase the efficacy of VEGF administration.VEGF was co-precipitated onto biphasic calcium phosphate (BCP) ceramics to achieve a sustained release of the growth factor. The co-precipitation efficacy and the release kinetics of the protein were investigated in vitro. For in vivo investigations BCP ceramics were implanted into critical size cranial defects in Balb/c mice. Angiogenesis and microvascularization were investigated over 28 days by means of intravital microscopy. The formation of new bone was determined histomorphometrically. Co-precipitation reduced the burst release of VEGF. Furthermore, a sustained, cell-mediated release of low concentrations of VEGF from BCP ceramics was mediated by resorbing osteoclasts. In vivo, sustained delivery of VEGF achieved by protein co-precipitation promoted biomaterial vascularization, osseointegration, and bone formation. Short-term release of VEGF following superficial adsorption resulted in a temporally restricted promotion of angiogenesis and did not enhance bone formation. The release kinetics of VEGF appears to be an important factor in the promotion of biomaterial vascularization and bone formation. Sustained release of VEGF increased the efficacy of VEGF delivery demonstrating that a prolonged bioavailability of low concentrations of VEGF is beneficial for bone regeneration.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ever since the first percutaneous transluminal angioplasty (PTA) was carried out in Switzerland in 1977, restenosis remains a major drawback of this minimally invasive treatment intervention. Numerous attempts to increase vessel patency after PTA have included systemic medications and endovascular brachytherapy, but these techniques have not met our expectations in preventing restenosis. Nitinol stents have been shown to reduce rates of restenosis and target lesion revascularization in patients undergoing endovascular treatment of long femoropopliteal obstructions. Despite further technical refinements in nitinol stent technology, restenosis occurs in approximately every third patient undergoing femoropopliteal stenting. Similarly, initial clinical trials with drug-eluting stents have failed to indicate restenosis inhibition in femoropopliteal segment. Unfortunately, restenosis rates after below-the-knee PTA and stenting have been reported to be even higher than those following femoropopliteal revascularization. Current concepts for the prevention and treatment of restenosis after PTA or stenting include the sustained release of antiproliferative paclitaxel into the vessel wall. Drug eluting balloons are a promising, novel technology aimed at inhibiting restenosis after PTA. Its clinical efficacy in reducing restenosis has already been proven for coronary arteries as well as for the femoropopliteal segment. The purpose of this article is to review the clinical utility of drug-eluting balloons for lower limb endovascular interventions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Boron is one of the trace elements in the human body which plays an important role in bone growth. Porous mesopore bioactive glass (MBG) scaffolds are proposed as potential bone regeneration materials due to their excellent bioactivity and drug-delivery ability. The aims of the present study were to develop boron-containing MBG (B-MBG) scaffolds by sol-gel method and to evaluate the effect of boron on the physiochemistry of B-MBG scaffolds and the response of osteoblasts to these scaffolds. Furthermore, the effect of dexamethasone (DEX) delivery in B-MBG scaffold system was investigated on the proliferation, differentiation and bone-related gene expression of osteoblasts. The composition, microstructure and mesopore properties (specific surface area, nano-pore volume and nano-pore distribution) of B-MBG scaffolds have been characterized. The effect of boron contents and large-pore porosity on the loading and release of DEX in B-MBG scaffolds were also investigated. The results have shown that the incorporation of boron into MBG scaffolds slightly decreases the specific surface area and pore volume, but maintains well-ordered mesopore structure and high surface area and nano-pore volume compared to non-mesopore bioactive glass. Boron contents in MBG scaffolds did not influence the nano-pore size distribution or the loading and release of DEX. B-MBG scaffolds have the ability to maintain a sustained release of DEX in a long-term span. Incorporating boron into MBG glass scaffolds led to a controllable release of boron ions and significantly improved the proliferation and bone-related gene expression (Col I and Runx2) of osteoblasts. Furthermore, the sustained release of DEX from B-MBG scaffolds significantly enhanced alkaline phosphatase (ALP) activity and gene expressions (Col I, Runx2, ALP and BSP) of osteoblasts. These results suggest that boron plays an important role in enhancing osteoblast proliferation in B-MBG scaffold system and DEX-loaded B-MBG scaffolds show great potential as a release system to enhance osteogenic property for bone tissue engineering application.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Corticosteroids are a versatile option for the treatment of mild-to-moderate psoriasis due to their availability in a wide range of potencies and formulations. Occlusion of the corticosteroid is a widely accepted procedure to enhance the penetration of the medication, thereby improving its effectiveness. Betamethasone valerate (BMV) is a moderately potent corticosteroid that is available as a cream, ointment, and lotion. A ready-to-use occlusive dressing, which provides a continuous sustained release of BMV, has been developed for the treatment of psoriasis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The biomimetic coating technique can be used to deposit layers of calcium phosphate (CaP) on medical devices to improve their osteoconductivity and osseointegration.The inorganic layer generated is akin to mineralized bone matrix and can be degraded as such. The biomimetic coating technique involves the nucleation and growth of bone-like crystals on a pretreated substrate by immersing it in a supersaturated solution of CaP under physiological conditions of temperature (37°C) and pH (7.4). The method, originally developed by Kokubo and his co-workers in 1990, has since undergone improvement and refinement by several groups of investigators. Biomimetic coatings are valuable in that they can serve as a vehicle for the slow, sustained release of osteogenic agents at the site of implantation. This attribute is rendered possible by the near-physiological conditions under which these coatings are prepared, which permits the incorporation of bioactive agents into the inorganic crystal latticework rather than their superficial adsorption on preformed layers. In addition, the biomimetic coating technique can be applied to implants of an organic as well as of a metallic nature and to those with irregular surface geometries, which is not possible using conventional methodologies.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We investigated the effects of dalfampridine, the sustained-release form of 4-aminopyridine, on slow phase velocity (SPV) and visual acuity (VA) in patients with downbeat nystagmus (DBN) and the side effects of the drug. In this proof-of-principle observational study, ten patients received dalfampridine 10 mg bid for 2 weeks. Recordings were conducted at baseline, 180 min after first administration, after 2 weeks of treatment and after 4 weeks of wash-out. Mean SPV decreased from a baseline of 2.12 deg/s ± 1.72 (mean ± SD) to 0.51 deg/s ± 1.00 180 min after first administration of dalfampridine 10 mg and to 0.89 deg/s ± 0.75 after 2 weeks of treatment with dalfampridine (p < 0.05; post hoc both: p < 0.05). After a wash-out period of 1 week, mean SPV increased to 2.30 deg/s ± 1.6 (p < 0.05; post hoc both: p < 0.05). The VA significantly improved during treatment with dalfampridine. Also, 50 % of patients did not report any side effects. The most common reported side effects were abdominal discomfort and dizziness. Dalfampridine is an effective treatment for DBN in terms of SPV. It was well-tolerated in all patients.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Efficient delivery of growth factors from carrier biomaterials depends critically on the release kinetics of the proteins that constitute the carrier. Immobilizing growth factors to calcium phosphate ceramics has been attempted by direct adsorption and usually resulted in a rapid and passive release of the superficially adherent proteins. The insufficient retention of growth factors limited their bioavailability and their efficacy in the treatment of bone regeneration. In this study, a coprecipitation technique of proteins and calcium phosphate was employed to modify the delivery of proteins from biphasic calcium phosphate (BCP) ceramics. To this end, tritium-labeled bovine serum albumin ([(3)H]BSA) was utilized as a model protein to analyze the coprecipitation efficacy and the release kinetics of the protein from the carrier material. Conventional adsorption of [(3)H]BSA resulted in a rapid and passive release of the protein from BCP ceramics, whereas the coprecipitation technique effectively prevented the burst release of [(3)H]BSA. Further analysis of the in vitro kinetics demonstrated a sustained, cell-mediated release of coprecipitated [(3)H]BSA from BCP ceramics induced by resorbing osteoclasts. The coprecipitation technique described herein, achieved a physiologic-like protein release, by incorporating [(3)H]BSA into its respective carriers, rendering it a promising tool in growth factor delivery for bone healing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In diacetylmorphine prescription programs for heavily dependent addicts, diacetylmorphine is usually administered intravenously, but this may not be possible due to venosclerosis or when heroin abuse had occurred via non-intravenous routes. Since up to 25% of patients administer diacetylmorphine orally, we characterised morphine absorption after single oral doses of immediate and extended release diacetylmorphine in 8 opioid addicts. Plasma concentrations were determined by liquid chromatography-mass spectrometry. Non-compartmental methods and deconvolution were applied for data analysis. Mean (+/-S.D.) immediate and extended release doses were 719+/-297 and 956+/-404 mg, with high absolute morphine bioavailabilities of 56-61%, respectively. Immediate release diacetylmorphine caused rapid morphine absorption, peaking at 10-15 min. Morphine absorption was considerably slower and more sustained for extended release diacetylmorphine, with only approximately 30% of maximal immediate release absorption being reached after 10 min and maintained for 3-4h, with no relevant food interaction. The relative extended to immediate release bioavailability was calculated to be 86% by non-compartmental analysis and 93% by deconvolution analysis. Thus, immediate and extended release diacetylmorphine produce the intended morphine exposures. Both are suitable for substitution treatments. Similar doses can be applied if used in combination or sequentially.