5 resultados para Sustainable design
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
This paper applies a policy analysis approach to the question of how to effectively regulate micropollution in a sustainable manner. Micropollution is a complex policy problem characterized by a huge number and diversity of chemical substances, as well as various entry paths into the aquatic environment. It challenges traditional water quality management by calling for new technologies in wastewater treatment and behavioral changes in industry, agriculture and civil society. In light of such challenges, the question arises as to how to regulate such a complex phenomenon to ensure water quality is maintained in the future? What can we learn from past experiences in water quality regulation? To answer these questions, policy analysis strongly focuses on the design and choice of policy instruments and the mix of such measures. In this paper, we review instruments commonly used in past water quality regulation. We evaluate their ability to respond to the characteristics of a more recent water quality problem, i.e., micropollution, in a sustainable way. This way, we develop a new framework that integrates both the problem dimension (i.e., causes and effects of a problem) as well as the sustainability dimension (e.g., long-term, cross-sectoral and multi-level) to assess which policy instruments are best suited to regulate micropollution. We thus conclude that sustainability criteria help to identify an appropriate instrument mix of end-of-pipe and source-directed measures to reduce aquatic micropollution.
Resumo:
Better access to knowledge and knowledge production has to be reconsidered as key to successful individual and social mitigation and adaptation strategies for global change. Indeed, concepts of sustainable development imply a transformation of science towards fostering democratisation of knowledge production and the development of knowledge societies as a strategic goal. This means to open the process of scientific knowledge production while simultaneously empowering people to implement their own visions for sustainable development. Advocates of sustainability science support this transformation. In transdisciplinary practice, they advance equity and accountability in the access to and production of knowledge at the science–society interface. UNESCO points to advancements, yet Northern dominance persists in knowledge production as well as in technology design and transfer. Further, transdisciplinary practice remains experimental and hampered by inadequate and asymmetrically equipped institutions in the North and South and related epistemological and operational obscurity. To help identify clear, practicable transdisciplinary approaches, I recommend examining the institutional route – i.e., the learning and adaptation process – followed in concrete cases. The transdisciplinary Eastern and Southern Africa Partnership Programme (1998–2013) is a case ripe for such examination. Understanding transdisciplinarity as an integrative approach, I highlight ESAPP’s three key principles for a more democratised knowledge production for sustainable development: (1) integration of scientific and “non-scientific” knowledge systems; (2) integration of social actors and institutions; and (3) integrative learning processes. The analysis reveals ESAPP’s achievements in contributing to more democratic knowledge production and South ownership in the realm of sustainable development.
Resumo:
Better access to knowledge and knowledge production has to be reconsidered as key to successful individual and social mitigation and adaptation strategies for global change. Indeed, concepts of sustainable development imply a transformation of science (Lubchenco 1998; WBGU 2011 and 2012) towards fostering democratisation of knowledge production as a contribution to the development of knowledge societies as a strategic goal (UNESCO 2005). This means to open the process of scientific knowledge production while simultaneously empowering people to implement their own visions for sustainable development. Advocates of sustainability science support this transformation. In transdisciplinary practice, they advance equity and accountability in the access to and production of knowledge at the science–society interface (Hirsch Hadorn et al 2006; Hirsch Hadorn et al 2008; Jäger 2009; Adger and Jordan 2009; KFPE 2012). UNESCO (2010) points to advancements, yet Northern dominance persists in knowledge production as well as in technology design and transfer (Standing and Taylor 2007; Zingerli 2010). Further, transdisciplinary practice remains experimental and hampered by inadequate and asymmetrically equipped institutions in the North and South and related epistemological and operational obscurity (Wiesmann et al 2011). To help identify clear, practicable transdisciplinary approaches, I recommend examining the institutional route (Mukhopadhyay et al 2006) – i.e., the learning and adaptation process – followed in concrete cases. The transdisciplinary Eastern and Southern Africa Partnership Programme (1998–2013) is a case ripe for such examination. Understanding transdisciplinarity as an integrative approach (Pohl et al 2008; Stock and Burton 2011), I highlight ESAPP’s three key principles for a more democratised knowledge production for sustainable development: (1) integration of scientific and “non-scientific” knowledge systems; (2) integration of social actors and institutions; and (3) integrative learning processes. The analysis reveals ESAPP’s achievements in contributing to more democratic knowledge production and South ownership in the realm of sustainable development.
Resumo:
This study adopts Ostrom’s Social-Ecological Systems (SES) framework in empirical fieldwork to explain how local forestry institutions affect forest ecosystems and social equity in the community of Mawlyngbna in North-East India. Data was collected through 26 semi-structured interviews, participatory timeline development, policy documents, direct observation, periodicals, transect walks, and a concurrent forest-ecological study in the village. Results show that Mawlyngbna's forests provide important sources of livelihood benefits for the villagers. However, ecological disturbance and diversity varies among the different forest ownership types and forest-based livelihood benefits are inequitably distributed. Based on a bounded rationality approach, our analysis proposes a set of causal mechanisms that trace these observed social-ecological outcomes to the attributes of the resource system, resource units, actors and governance system. We analyse opportunities and constraints of interactions between the village, regional, and state levels. We discuss how Ostrom’s design principles for community-based resource governance inform the explanation of robustness but have a blind spot in explaining social equity. We report experiences made using the SES framework in empirical fieldwork. We conclude that mapping cross-level interactions in the SES framework needs conceptual refinement and that explaining social equity of forest governance needs theoretical advances.
Resumo:
Land systems are the result of human interactions with the natural environment. Understanding the drivers, state, trends and impacts of different land systems on social and natural processes helps to reveal how changes in the land system affect the functioning of the socio-ecological system as a whole and the tradeoff these changes may represent. The Global Land Project has led advances by synthesizing land systems research across different scales and providing concepts to further understand the feedbacks between social-and environmental systems, between urban and rural environments and between distant world regions. Land system science has moved from a focus on observation of change and understanding the drivers of these changes to a focus on using this understanding to design sustainable transformations through stakeholder engagement and through the concept of land governance. As land use can be seen as the largest geo-engineering project in which mankind has engaged, land system science can act as a platform for integration of insights from different disciplines and for translation of knowledge into action.