7 resultados para Surfactant-free dip coating

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background During production and processing of multi-walled carbon nanotubes (MWCNTs), they may be inhaled and may enter the pulmonary circulation. It is essential that interactions with involved body fluids like the pulmonary surfactant, the blood and others are investigated, particularly as these interactions could lead to coating of the tubes and may affect their chemical and physical characteristics. The aim of this study was to characterize the possible coatings of different functionalized MWCNTs in a cell free environment. Results To simulate the first contact in the lung, the tubes were coated with pulmonary surfactant and subsequently bound lipids were characterized. The further coating in the blood circulation was simulated by incubating the tubes in blood plasma. MWCNTs were amino (NH2)- and carboxyl (-COOH)-modified, in order to investigate the influence on the bound lipid and protein patterns. It was shown that surfactant lipids bind unspecifically to different functionalized MWCNTs, in contrast to the blood plasma proteins which showed characteristic binding patterns. Patterns of bound surfactant lipids were altered after a subsequent incubation in blood plasma. In addition, it was found that bound plasma protein patterns were altered when MWCNTs were previously coated with pulmonary surfactant. Conclusions A pulmonary surfactant coating and the functionalization of MWCNTs have both the potential to alter the MWCNTs blood plasma protein coating and to determine their properties and behaviour in biological systems.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background Increasing concern has been expressed regarding the potential adverse health effects that may be associated with human exposure to inhaled multi-walled carbon nanotubes (MWCNTs). Thus it is imperative that an understanding as to the underlying mechanisms and the identification of the key factors involved in adverse effects are gained. In the alveoli, MWCNTs first interact with the pulmonary surfactant. At this interface, proteins and lipids of the pulmonary surfactant bind to MWCNTs, affecting their surface characteristics. Aim of the present study was to investigate if the pre-coating of MWCNTs with pulmonary surfactant has an influence on potential adverse effects, upon both (i) human monocyte derived macrophages (MDM) monocultures, and (ii) a sophisticated in vitro model of the human epithelial airway barrier. Both in vitro systems were exposed to MWCNTs either pre-coated with a porcine pulmonary surfactant (Curosurf) or not. The effect of MWCNTs surface charge was also investigated in terms of amino (−NH2) and carboxyl (−COOH) surface modifications. Results Pre-coating of MWCNTs with Curosurf affects their oxidative potential by increasing the reactive oxygen species levels and decreasing intracellular glutathione depletion in MDM as well as decreases the release of Tumour necrosis factor alpha (TNF-α). In addition, an induction of apoptosis was observed after exposure to Curosurf pre-coated MWCNTs. In triple cell-co cultures the release of Interleukin-8 (IL-8) was increased after exposure to Curosurf pre-coated MWCNTs. Effects of the MWCNTs functionalizations were minor in both MDM and triple cell co-cultures. Conclusions The present study clearly indicates that the pre-coating of MWCNTs with pulmonary surfactant more than the functionalization of the tubes is a key factor in determining their ability to cause oxidative stress, cytokine/chemokine release and apoptosis. Thus the coating of nano-objects with pulmonary surfactant should be considered for future lung in vitro risk assessment studies. Keywords: Multi-walled carbon nanotubes (MWCNTs); Pulmonary surfactant (Curosurf); Macrophages; Epithelial cells; Dendritic cells; Triple cell co-culture; Pro-inflammatory and oxidative reactions

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVES: We aimed to assess the predictive value of the SYNTAX score (SXscore) for major adverse cardiac events in the all-comers population of the LEADERS (Limus Eluted from A Durable versus ERodable Stent coating) trial. BACKGROUND: The SXscore has been shown to be an effective predictor of clinical outcomes in patients with multivessel disease undergoing percutaneous coronary intervention. METHODS: The SXscore was prospectively collected in 1,397 of the 1,707 patients enrolled in the LEADERS trial (patients after surgical revascularization were excluded). Post hoc analysis was performed by stratifying clinical outcomes at 1-year follow-up, according to 1 of 3 SXscore tertiles. RESULTS: The 1,397 patients were divided into tertiles based on the SXscore in the following fashion: SXscore8 and 16 (SXhigh) (n=461). At 1-year follow-up, there was a significantly lower number of patients with major cardiac event-free survival in the highest tertile of SXscore (SXlow=92.2%, SXmid=91.1%, and SXhigh=84.6%; p<0.001). Death occurred in 1.5% of SXlow patients, 2.1% of SXmid patients, and 5.6% of SXhigh patients (hazard ratio [HR]: 1.97, 95% confidence interval [CI]: 1.29 to 3.01; p=0.002). The myocardial infarction rate tended to be higher in the SXhigh group. Target vessel revascularization was 11.3% in the SXhigh group compared with 6.3% and 7.8% in the SXlow and SXmid groups, respectively (HR: 1.38, 95% CI: 1.1 to 1.75; p=0.006). Composite of cardiac death, myocardial infarction, and clinically indicated target vessel revascularization was 7.8%, 8.9%, and 15.4% in the SXlow, SXmid, and SXhigh groups, respectively (HR: 1.47, 95% CI: 1.19 to 1.81; p<0.001). CONCLUSIONS: The SXscore, when applied to an all-comers patient population treated with drug-eluting stents, may allow prospective risk stratification of patients undergoing percutaneous coronary intervention. (LEADERS Trial Limus Eluted From A Durable Versus ERodable Stent Coating; NCT00389220).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Previously, we described the protective role of the neutrophil serine protease inhibitor serpinB1 in preventing early mortality of Pseudomonas aeruginosa lung infection by fostering bacterial clearance and limiting inflammatory cytokines and proteolytic damage. Surfactant protein D (SP-D), which maintains the antiinflammatory pulmonary environment and mediates bacterial removal, was degraded in infected serpinB1-deficient mice. Based on the hypothesis that increased SP-D would rescue or mitigate the pathological effects of serpinB1 deletion, we generated two serpinB1(-/-) lines overexpressing lung-specific rat SP-D and inoculated the mice with P. aeruginosa. Contrary to predictions, bacterial counts in the lungs of SP-D(low)serpinB1(-/-) and SP-D(high) serpinB1(-/-) mice were 4 logs higher than wild-type and not different from serpinB1(-/-) mice. SP-D overexpression also failed to mitigate inflammation (TNF-α), lung injury (free protein, albumin), or excess neutrophil death (free myeloperoxidase, elastase). These pathological markers were higher for infected SP-D(high)serpinB1(-/-) mice than for serpinB1(-/-) mice, although the differences were not significant after controlling for multiple comparisons. The failure of transgenic SP-D to rescue antibacterial defense of serpinB1-deficient mice occurred despite 5-fold or 20-fold increased expression levels, largely normal structure, and dose-dependent bacteria-aggregating activity. SP-D of infected wild-type mice was intact in 43-kD monomers by reducing SDS-PAGE. By contrast, proteolytic fragments of 35, 17, and 8 kD were found in infected SP-D(low)serpinB1(-/-), SP-D(high) serpinB1(-/-) mice, and serpinB1(-/-) mice. Thus, although therapies to increase lung concentration of SP-D may have beneficial applications, the findings suggest that therapy with SP-D may not be beneficial for lung inflammation or infection if the underlying clinical condition includes excess proteolysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In addition to particle size and surface chemistry, the shape of particles plays an important role in their wetting and displacement by the surfactant film in the lung. The role of particle shape was the subject of our investigations using a model system consisting of a modified Langmuir-Wilhelmy surface balance. We measured the influence of sharp edges (lines) and other highly curved surfaces, including sharp corners or spikes, of different particles on the spreading of a dipalmitoylphosphatidyl (DPPC) film. The edges of cylindrical sapphire plates (circular curved edges, 1.65 mm radius) were wetted at a surface tension of 10.7 mJ/m2 (standard error (SE) = 0.45, n = 20) compared with that of 13.8 mJ/m2 (SE = 0.20, n = 20) for cubic sapphire plates (straight linear edges, edge length 3 mm) (p < 0.05). The top surfaces of the sapphire plates (cubic and cylindrical) were wetted at 8.4 mJ/m2 (SE = 0.54, n = 20) and 9.1 mJ/m2 (SE = 0.50, n = 20), respectively, but the difference was not significant (p > 0.05). The surfaces of the plates showed significantly higher resistance to spreading compared to that of the edges, as substantially lower surface tensions were required to initiate wetting (p < 0.05). Similar results were found for talc particles, were the edges of macro- and microcrystalline particles were wetted at 7.2 mJ/m2 (SE = 0.52, n = 20) and 8.2 mJ/m2 (SE = 0.30, n = 20) (p > 0.05), respectively, whereas the surfaces were wetted at 3.8 mJ/m2 (SE = 0.89, n = 20) and 5.8 mJ/m2 (SE = 0.52, n = 20) (p < 0.05), respectively. Further experiments with pollen of malvaceae and maize (spiky and fine knobbly surfaces) were wetted at 10.0 mJ/m2 (SE = 0.52, n = 10) and 22.75 mJ/m2 (SE = 0.81, n = 10), respectively (p < 0.05). These results show that resistance to spreading of a DPPC film on various surfaces is dependent on the extent these surfaces are curved. This is seen with cubic sapphire plates which have at their corners a radius of curvature of about 0.75 microm, spiky malvaceae pollen with an even smaller radius on top of their spikes, or talc with various highly curved surfaces. These highly curved surfaces resisted wetting by the DPPC film to a higher degree than more moderately curved surfaces such as those of cylindrical sapphire plates, maize pollens, or polystyrene spheres, which have a surface free energy similar to that of talc but a smooth surface. The macroscopic plane surfaces of the particles demonstrated the greatest resistance to spreading. This was explained by the extremely fine grooves in the nanometer range, as revealed by electron microscopy. In summary, to understand the effects of airborne particles retained on the surfaces of the respiratory tract, and ultimately their pathological potential, not only the particle size and surface chemistry but also the particle shape should be taken in consideration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

AIMS: Restenosis has been the principal limitation of bare metal stents. Based upon the presumption that platelet and inflammatory cell recruitment initiate neointimal proliferation, we explored a novel polymer coating that reduces cell-stent interactions. The purpose of the present study was to investigate the effect of poly(L-lysine)-graft-poly(ethyleneglycol) (PLL-g-PEG) adsorbed to stent surfaces to reduce neointimal hyperplasia in the porcine restenosis model. METHODS AND RESULTS: Seven animals were instrumented each with 2 stainless steel stents (15 mm length, 2.5-3.5 mm diameter), randomly implanted in 1 major epicardial coronary artery. One stent was dip-coated with PLL-g-PEG, whereas the other stent served as the uncoated control stent. All animals were sacrificed after 6 weeks for histological examination. Neointimal hyperplasia was significantly less (-51%) in the PLL-g-PEG-coated stents (1.15 +/- 0.59 mm2) than in the uncoated control stents (2.33 +/- 1.01 mm2; p < 0.001). Conversely, lumen size was larger in the PLL-g-PEG-coated stents (2.91 +/- 1.17 mm2) than in the uncoated stents (2.04 +/- 0.64 mm2; p < 0.001). High magnification histomorphologic examination revealed no signs of inflammation or thrombus formation in either stent group. CONCLUSIONS: Polymeric steric stabilization of stents with PLL-g-PEG significantly reduces neointimal hyperplasia in the porcine restenosis model. Reduction of cell-stent interactions mediated by PLL-g-PEG appear to improve biocompatibility of stainless steel stents without evidence of adverse inflammatory or prothrombotic effects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The adsorption of anionic, carboxyl functionalized latex particles, recharged by a cationic surfactant acting as fabric softener/conditioner, to a cellulose surface was investigated with evanescent wave video microscopy. This technique allows to monitor the deposition and release of individual particles in real-time with an excellent selectivity and sensitivity. Since the recharged particles and the conditioner compete for the free surface, the initial deposition rate and final surface coverage are found to be strongly dependent on the ratio of particle and conditioner concentrations.