7 resultados para Surface preparation.
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
This study aims to evaluate the influence of different surface preparation techniques on long-term bonding effectiveness to eroded dentin.
Resumo:
OBJECTIVE The aim of this study was to investigate the effect of different energy settings of Er:YAG laser irradiation on dentin surface morphology with respect to the number of opened dentinal tubules. BACKGROUND DATA An ideally prepared dentin surface with opened dentinal tubules is a prerequisite for adhesive fixation. No study, however, has yet compared the numbers of opened dentinal tubules with regard to statistical differences. METHODS Conventional preparations using a bur with or without additional acid etching acted as control groups. Dentin specimens were prepared from human third molars and randomly divided into eight groups according to the energy settings of the laser (1, 1.5, 4, 6, 7.5, and 8 W) and two controls (bur and bur plus acid etching). After surface preparation, dentin surfaces were analyzed with a scanning electron microscope, and the number of opened dentinal tubules in a defined area was counted. RESULTS The control groups showed smooth surfaces with (bur plus acid etching) and without opened dentinal tubules (bur), whereas all laser-irradiated surfaces showed rough surfaces. Using the energy setting of 4 W resulted in significantly more opened dentinal tubules than the conventional preparation technique using the bur with additional acid etching. In contrast, the energy setting of 8 W showed significantly fewer opened dentinal tubules, and also exhibited signs of thermal damage. CONCLUSIONS The Er:YAG laser with an energy setting of 4 W generates a dentin surface with opened dentinal tubules, a prerequisite for adhesive fixation.
Resumo:
We have studied Au(55 nm)@SiO2 nanoparticles (NPs) on two low-index phases of gold and platinum single crystal electrodes in ClO4– and SO42– ion-containing electrolytes by both electrochemical methods and in-situ shell-isolated nanoparticle enhanced Raman spectroscopy (SHINERS). We showed the blocking of the electrode with surfactants originating from the synthesis of as-prepared SHINERS NPs. We introduce an efficient procedure to overcome this problem, which provides a fundamental platform for the application of SHINERS in surface electrochemistry and beyond. Our method is based on a hydrogen evolution treatment of the SHINERS-NP-modified single-crystal surfaces. The reliability of our preparation strategy is demonstrated in electrochemical SHINERS experiments on the potential-controlled adsorption and phase formation of pyridine on Au(hkl) and Pt(hkl). We obtained high-quality Raman spectra on these well-defined and structurally carefully characterized single-crystal surfaces. The analysis of the characteristic A1 vibrational modes revealed perfect agreement with the interpretation of single-crystal voltammetric and chronoamperometric experiments. Our study demonstrates that the SHINERS protocol developed in this work qualifies this Raman method as a pioneering approach with unique opportunities for in situ structure and reactivity studies at well-defined electrochemical solid/liquid interfaces.
Resumo:
The study deals with the status and potential of surface water resources in Upper Anseba, Central Highlands of Eritrea, one of the most densely populated regions in Eritrea, including small scale farming and the country's capital city. water demand is increasing rapidly for all uses. The area has no perennial water course and depends very largely on reservoirs for its water supply. The report finds that there are 74 reservoirs in the area, of which 49 are in Upper Anseba. Total reservoir capacity already corresponds to 70% of runoff. the capacity of some of the reservoirs already exceeds annual runoff of their catchment. Recommendations thus include the use of water saving technologies for irrigation; and above all, preparation of a regional master plan for development, including water allocation planning with a mid term perspective.
Resumo:
Sample preparation procedures for AMS measurements of 129I and 127I in environmental materials and some methodological aspects of quality assurance are discussed. Measurements from analyses of some pre-nuclear soil and thyroid gland samples and of a systematic investigation of natural waters in Lower Saxony, Germany, are described. Although the up-to-now lowest 129I/127I ratios in soils and thyroid glands were observed, they are still suspect to contamination since they are significantly higher than the pre-nuclear equilibrium ratio in the marine hydrosphere. A survey on all available 129I/127I isotopic ratios in precipitation shows a dramatic increase until the middle of the 1980s and a stabilization since 1987 at high isotopic ratios of about (3.6–8.3)×10−7. In surface waters, ratios of (57–380)×10−10 are measured while shallow ground waters show with ratios of (1.3–200)×10−10 significantly lower values with a much larger spread. The data for 129I in soils and in precipitation are used to estimate pre-nuclear and modern 129I deposition densities.
Resumo:
Purpose To investigate whether nonhemodynamic resonant saturation effects can be detected in patients with focal epilepsy by using a phase-cycled stimulus-induced rotary saturation (PC-SIRS) approach with spin-lock (SL) preparation and whether they colocalize with the seizure onset zone and surface interictal epileptiform discharges (IED). Materials and Methods The study was approved by the local ethics committee, and all subjects gave written informed consent. Eight patients with focal epilepsy undergoing presurgical surface and intracranial electroencephalography (EEG) underwent magnetic resonance (MR) imaging at 3 T with a whole-brain PC-SIRS imaging sequence with alternating SL-on and SL-off and two-dimensional echo-planar readout. The power of the SL radiofrequency pulse was set to 120 Hz to sensitize the sequence to high gamma oscillations present in epileptogenic tissue. Phase cycling was applied to capture distributed current orientations. Voxel-wise subtraction of SL-off from SL-on images enabled the separation of T2* effects from rotary saturation effects. The topography of PC-SIRS effects was compared with the seizure onset zone at intracranial EEG and with surface IED-related potentials. Bayesian statistics were used to test whether prior PC-SIRS information could improve IED source reconstruction. Results Nonhemodynamic resonant saturation effects ipsilateral to the seizure onset zone were detected in six of eight patients (concordance rate, 0.75; 95% confidence interval: 0.40, 0.94) by means of the PC-SIRS technique. They were concordant with IED surface negativity in seven of eight patients (0.88; 95% confidence interval: 0.51, 1.00). Including PC-SIRS as prior information improved the evidence of the standard EEG source models compared with the use of uninformed reconstructions (exceedance probability, 0.77 vs 0.12; Wilcoxon test of model evidence, P < .05). Nonhemodynamic resonant saturation effects resolved in patients with favorable postsurgical outcomes, but persisted in patients with postsurgical seizure recurrence. Conclusion Nonhemodynamic resonant saturation effects are detectable during interictal periods with the PC-SIRS approach in patients with epilepsy. The method may be useful for MR imaging-based detection of neuronal currents in a clinical environment. (©) RSNA, 2016 Online supplemental material is available for this article.