3 resultados para Supply Reduction
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
OBJECTIVE: To report preliminary results with a new surgical method of treating terminal emphysema by bilateral reduction of lung volume. PATIENTS AND METHODS: In a prospective study, the results obtained with the first 20 consecutive patients (mean FEV1: 590 +/- 180 ml) who underwent operative reduction of lung volume were recorded. 19 of the 20 patients had required continuous oxygen supply. RESULTS: The patients were extubated 8.5 +/- 6 h postoperatively; thoracic drainage was removed after 9 +/- 6 days. The degree of dyspnoea was decreased in all patients (3.5 +/- 0.5 vs 0.5 +/- 0.1). Significant reduction of overinflation occurred soon after the operation (residual volume 273 +/- 125 to 201 +/- 107% of normal; total capacity from 142 +/- 18 to 109 +/- 22% of normal), as well as reduction in the degree of obstruction (FEV1 from 18 +/- 6 to 24 +/- 7% of normal; for each, P < 0.05). One patient died 3 weeks post-operatively of Candida infection. CONCLUSION: The method looks promising for the treatment of selected patients and may thus provide an alternative to lung transplantation.
Resumo:
In this pilot study water was extracted from samples of two Holocene stalagmites from Socotra Island, Yemen, and one Eemian stalagmite from southern continental Yemen. The amount of water extracted per unit mass of stalagmite rock, termed "water yield" hereafter, serves as a measure of its total water content. Based on direct correlation plots of water yields and δ18Ocalcite and on regime shift analyses, we demonstrate that for the studied stalagmites the water yield records vary systematically with the corresponding oxygen isotopic compositions of the calcite (δ18Ocalcite). Within each stalagmite lower δ18Ocalcite values are accompanied by lower water yields and vice versa. The δ18Ocalcite records of the studied stalagmites have previously been interpreted to predominantly reflect the amount of rainfall in the area; thus, water yields can be linked to drip water supply. Higher, and therefore more continuous drip water supply caused by higher rainfall rates, supports homogeneous deposition of calcite with low porosity and therefore a small fraction of water-filled inclusions, resulting in low water yields of the respective samples. A reduction of drip water supply fosters irregular growth of calcite with higher porosity, leading to an increase of the fraction of water-filled inclusions and thus higher water yields. The results are consistent with the literature on stalagmite growth and supported by optical inspection of thin sections of our samples. We propose that for a stalagmite from a dry tropical or subtropical area, its water yield record represents a novel paleo-climate proxy recording changes in drip water supply, which can in turn be interpreted in terms of associated rainfall rates.
Resumo:
With the aim of analysing the relative importance of sugar supply and nitrogen nutrition for the regulation of sulphate assimilation, the regulation of adenosine 5′‐phosphosulphate reductase (APR), a key enzyme of sulphate reduction in plants, was studied. Glucose feeding experiments with Arabidopsis thaliana cultivated with and without a nitrogen source were performed. After a 38 h dark period, APR mRNA, protein, and enzymatic activity levels decreased dramatically in roots. The addition of 0.5% (w/v) glucose to the culture medium resulted in an increase of APR levels in roots (mRNA, protein and activity), comparable to those of plants kept under normal light conditions. Treatment of roots with D‐sorbitol or D‐mannitol did not increase APR activity, indicating that osmotic stress was not involved in APR regulation. The addition of O‐acetyl‐L‐serine (OAS) also quickly and transiently increased APR levels (mRNA, protein, and activity). Feeding plants with a combination of glucose and OAS resulted in a more than additive induction of APR activity. Contrary to nitrate reductase, APR was also increased by glucose in N‐deficient plants, indicating that this effect was independent of nitrate assimilation. [35S]‐sulphate feeding experiments showed that the addition of glucose to dark‐treated roots resulted in an increased incorporation of [35S] into thiols and proteins, which corresponded to the increased levels of APR activity. Under N‐deficient conditions, glucose also increased thiol labelling, but did not increase the incorporation of label into proteins. These results demonstrate that (i) exogenously supplied glucose can replace the function of photoassimilates in roots; (ii) APR is subject to co‐ordinated metabolic control by carbon metabolism; (iii) positive sugar signalling overrides negative signalling from nitrate assimilation in APR regulation. Furthermore, signals originating from nitrogen and carbon metabolism regulate APR synergistically.