4 resultados para Sub-seafloor modeling
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
A feature represents a functional requirement fulfilled by a system. Since many maintenance tasks are expressed in terms of features, it is important to establish the correspondence between a feature and its implementation in source code. Traditional approaches to establish this correspondence exercise features to generate a trace of runtime events, which is then processed by post-mortem analysis. These approaches typically generate large amounts of data to analyze. Due to their static nature, these approaches do not support incremental and interactive analysis of features. We propose a radically different approach called live feature analysis, which provides a model at runtime of features. Our approach analyzes features on a running system and also makes it possible to grow feature representations by exercising different scenarios of the same feature, and identifies execution elements even to the sub-method level. We describe how live feature analysis is implemented effectively by annotating structural representations of code based on abstract syntax trees. We illustrate our live analysis with a case study where we achieve a more complete feature representation by exercising and merging variants of feature behavior and demonstrate the efficiency or our technique with benchmarks.
Resumo:
The spectacular images of Comet 103P/Hartley 2 recorded by the Medium Resolution Instrument (MRI) and High Resolution Instrument (HRI) on board of the Extrasolar Planet Observation and Deep Impact Extended Investigation (EPOXI) spacecraft, as the Deep Impact extended mission, revealed that its bi-lobed very active nucleus outgasses volatiles heterogeneously. Indeed, CO2 is the primary driver of activity by dragging out chunks of pure ice out of the nucleus from the sub-solar lobe that appear to be the main source of water in Hartley 2's coma by sublimating slowly as they go away from the nucleus. However, water vapor is released by direct sublimation of the nucleus at the waist without any significant amount of either CO2 or icy grains. The coma structure for a comet with such areas of diverse chemistry differs from the usual models where gases are produced in a homogeneous way from the surface. We use the fully kinetic Direct Simulation Monte Carlo model of Tenishev et al. (Tenishev, V.M., Combi, M.R., Davidsson, B. [2008]. Astrophys. J. 685, 659-677; Tenishev, V.M., Combi, M.R., Rubin, M. [2011]. Astrophys. J. 732, 104-120) applied to Comet 103P/Hartley 2 including sublimating icy grains to reproduce the observations made by EPOXI and ground-based measurements. A realistic bi-lobed nucleus with a succession of active areas with different chemistry was included in the model enabling us to study in details the coma of Hartley 2. The different gas production rates from each area were found by fitting the spectra computed using a line-by-line non-LTE radiative transfer model to the HRI observations. The presence of icy grains with long lifetimes, which are pushed anti-sunward by radiation pressure, explains the observed OH asymmetry with enhancement on the night side of the coma.