5 resultados para Study historic
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
BACKGROUND: This study evaluates 3-year success rates of titanium screw-type implants with a chemically modified sandblasted and acid-etched surface (mod SLA), which were functionally loaded after 3 weeks of healing. METHODS: A total of 56 implants, inserted in the posterior mandibles of 39 partially edentulous patients, underwent undisturbed healing for 3 weeks. At day 21, the implants were fully loaded with provisional crowns. Definitive metal ceramic restorations were fabricated after 6 months of healing. Clinical measurements regarding soft tissue parameters and radiographs were obtained at different time points up to 36 months after implant placement. The soft tissue and radiographic parameters for the mod SLA implants after 3 years in function were compared to a historic control group of implants with an SLA surface using an early loading protocol after 6 weeks. RESULTS: None of the implants failed to integrate. However, two implants were considered "spinners" at day 21 and were left unloaded for an extended period. Therefore, 96.4% of the inserted implants were loaded according to the protocol tested. All 56 implants, including the "spinners," showed favorable clinical and radiographic findings at the 3-year follow-up examination. All 56 implants were considered successfully integrated, resulting in a 3-year survival and success rate of 100%. Dental implants with a mod SLA surface demonstrated statistically significant differences for probing depths and clinical attachment level values compared to the historic control group, with the mod SLA surface implants having overall lower probing depths and clinical attachment level scores. CONCLUSION: This prospective study using an early loading protocol demonstrates that titanium implants with the mod SLA surface can achieve and maintain successful tissue integration over a period of 3 years.
Resumo:
Syndromic surveillance (SyS) systems currently exploit various sources of health-related data, most of which are collected for purposes other than surveillance (e.g. economic). Several European SyS systems use data collected during meat inspection for syndromic surveillance of animal health, as some diseases may be more easily detected post-mortem than at their point of origin or during the ante-mortem inspection upon arrival at the slaughterhouse. In this paper we use simulation to evaluate the performance of a quasi-Poisson regression (also known as an improved Farrington) algorithm for the detection of disease outbreaks during post-mortem inspection of slaughtered animals. When parameterizing the algorithm based on the retrospective analyses of 6 years of historic data, the probability of detection was satisfactory for large (range 83-445 cases) outbreaks but poor for small (range 20-177 cases) outbreaks. Varying the amount of historical data used to fit the algorithm can help increasing the probability of detection for small outbreaks. However, while the use of a 0·975 quantile generated a low false-positive rate, in most cases, more than 50% of outbreak cases had already occurred at the time of detection. High variance observed in the whole carcass condemnations time-series, and lack of flexibility in terms of the temporal distribution of simulated outbreaks resulting from low reporting frequency (monthly), constitute major challenges for early detection of outbreaks in the livestock population based on meat inspection data. Reporting frequency should be increased in the future to improve timeliness of the SyS system while increased sensitivity may be achieved by integrating meat inspection data into a multivariate system simultaneously evaluating multiple sources of data on livestock health.
Resumo:
Historic records of α-dicarbonyls (glyoxal, methylglyoxal), carboxylic acids (C6–C12 dicarboxylic acids, pinic acid, p-hydroxybenzoic acid, phthalic acid, 4-methylphthalic acid), and ions (oxalate, formate, calcium) were determined with annual resolution in an ice core from Grenzgletscher in the southern Swiss Alps, covering the time period from 1942 to 1993. Chemical analysis of the organic compounds was conducted using ultra-high-performance liquid chromatography (UHPLC) coupled to electrospray ionization high-resolution mass spectrometry (ESI-HRMS) for dicarbonyls and long-chain carboxylic acids and ion chromatography for short-chain carboxylates. Long-term records of the carboxylic acids and dicarbonyls, as well as their source apportionment, are reported for western Europe. This is the first study comprising long-term trends of dicarbonyls and long-chain dicarboxylic acids (C6–C12) in Alpine precipitation. Source assignment of the organic species present in the ice core was performed using principal component analysis. Our results suggest biomass burning, anthropogenic emissions, and transport of mineral dust to be the main parameters influencing the concentration of organic compounds. Ice core records of several highly correlated compounds (e.g., p-hydroxybenzoic acid, pinic acid, pimelic, and suberic acids) can be related to the forest fire history in southern Switzerland. P-hydroxybenzoic acid was found to be the best organic fire tracer in the study area, revealing the highest correlation with the burned area from fires. Historical records of methylglyoxal, phthalic acid, and dicarboxylic acids adipic acid, sebacic acid, and dodecanedioic acid are comparable with that of anthropogenic emissions of volatile organic compounds (VOCs). The small organic acids, oxalic acid and formic acid, are both highly correlated with calcium, suggesting their records to be affected by changing mineral dust transport to the drilling site.