14 resultados para Stream Cipher

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Evaluation of the technical and diagnostic feasibility of commercial multiplex real-time polymerase chain reaction (PCR) for detection of blood stream infections in a cohort of intensive care unit (ICU) patients with severe sepsis, performed in addition to conventional blood cultures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The relative importance of ecological selection and geographical isolation in promoting and constraining genetic and phenotypic differentiation among populations is not always obvious. Interacting with divergent selection, restricted opportunity for gene flow may in some cases be as much a cause as a consequence of adaptation, with the latter being a hallmark of ecologi- cal speciation. Ecological speciation is well studied in parts of the native range of the three-spined stickleback. Here, we study this process in a recently invaded part of its range. Switzerland was colonized within the past 140 years from at least three different colonization events involving differ- ent stickleback lineages. They now occupy diverse habitats, ranging from small streams to the pelagic zone of large lakes. We use replicated systems of parapatric lake and stream populations, some of which trace their origins to different invasive lineages, to ask (i) whether phenotypic divergence occurred among populations inhabiting distinct habitats, (ii) whether trajec- tories of phenotypic divergence follow predictable parallel patterns and (iii) whether gene flow constrains divergent adaptation or vice versa. We find consistent phenotypic divergence between populations occupying distinct habitats. This involves parallel evolution in several traits with known eco- logical relevance in independent evolutionary lineages. Adaptive divergence supersedes homogenizing gene flow even at a small spatial scale. We find evidence that adaptive phenotypic divergence places constraints on gene flow over and above that imposed by geographical distance, signalling the early onset of ecological speciation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a comprehensive analytical study of radiative transfer using the method of moments and include the effects of non-isotropic scattering in the coherent limit. Within this unified formalism, we derive the governing equations and solutions describing two-stream radiative transfer (which approximates the passage of radiation as a pair of outgoing and incoming fluxes), flux-limited diffusion (which describes radiative transfer in the deep interior) and solutions for the temperature-pressure profiles. Generally, the problem is mathematically under-determined unless a set of closures (Eddington coefficients) is specified. We demonstrate that the hemispheric (or hemi-isotropic) closure naturally derives from the radiative transfer equation if energy conservation is obeyed, while the Eddington closure produces spurious enhancements of both reflected light and thermal emission. We concoct recipes for implementing two-stream radiative transfer in stand-alone numerical calculations and general circulation models. We use our two-stream solutions to construct toy models of the runaway greenhouse effect. We present a new solution for temperature-pressure profiles with a non-constant optical opacity and elucidate the effects of non-isotropic scattering in the optical and infrared. We derive generalized expressions for the spherical and Bond albedos and the photon deposition depth. We demonstrate that the value of the optical depth corresponding to the photosphere is not always 2/3 (Milne's solution) and depends on a combination of stellar irradiation, internal heat and the properties of scattering both in optical and infrared. Finally, we derive generalized expressions for the total, net, outgoing and incoming fluxes in the convective regime.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

When genetic constraints restrict phenotypic evolution, diversification can be predicted to evolve along so-called lines of least resistance. To address the importance of such constraints and their resolution, studies of parallel phenotypic divergence that differ in their age are valuable. Here, we investigate the parapatric evolution of six lake and stream threespine stickleback systems from Iceland and Switzerland, ranging in age from a few decades to several millennia. Using phenotypic data, we test for parallelism in ecotypic divergence between parapatric lake and stream populations and compare the observed patterns to an ancestral-like marine population. We find strong and consistent phenotypic divergence, both among lake and stream populations and between our freshwater populations and the marine population. Interestingly, ecotypic divergence in low-dimensional phenotype space (i.e. single traits) is rapid and seems to be often completed within 100 years. Yet, the dimensionality of ecotypic divergence was highest in our oldest systems and only there parallel evolution of unrelated ecotypes was strong enough to overwrite phylogenetic contingency. Moreover, the dimensionality of divergence in different systems varies between trait complexes, suggesting different constraints and evolutionary pathways to their resolution among freshwater systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spatial heterogeneity in diversity and intensity of parasitism is a typical feature of most host-parasite interactions, but understanding of the evolutionary implications of such variation is limited. One possible outcome of infection heterogeneities is parasite-mediated divergent selection between host populations, ecotypes or species which may facilitate the process of ecological speciation. However, very few studies have described infections in population-pairs along the speciation continuum from low to moderate or high degree of genetic differentiation that would address the possibility of parasite-mediated divergent selection in the early stages of the speciation process. Here we provide an example of divergent parasitism in freshwater fish ecotypes by examining macroparasite infections in threespine stickleback (Gasterosteus aculeatus) of four Swiss lake systems each harbouring parapatric lake-stream ecotype pairs. We demonstrate significant differences in infections within and between the pairs that are driven particularly by the parasite taxa transmitted to fish from benthic invertebrates. The magnitude of the differences tended to correlate positively with the extent of neutral genetic differentiation between the parapatric lake and stream populations of stickleback, whereas no such correlation was found among allopatric populations from similar or contrasting habitats. This suggests that genetic differentiation is unrelated to the magnitude of parasite infection contrasts when gene flow is constrained by geographical barriers while in the absence of physical barriers, genetic differentiation and the magnitude of differences in infections tend to be positively correlated.