44 resultados para Strategic planning of IT
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Robust and accurate identification of intervertebral discs from low resolution, sparse MRI scans is essential for the automated scan planning of the MRI spine scan. This paper presents a graphical model based solution for the detection of both the positions and orientations of intervertebral discs from low resolution, sparse MRI scans. Compared with the existing graphical model based methods, the proposed method does not need a training process using training data and it also has the capability to automatically determine the number of vertebrae visible in the image. Experiments on 25 low resolution, sparse spine MRI data sets verified its performance.
Resumo:
Purpose: Proper delineation of ocular anatomy in 3D imaging is a big challenge, particularly when developing treatment plans for ocular diseases. Magnetic Resonance Imaging (MRI) is nowadays utilized in clinical practice for the diagnosis confirmation and treatment planning of retinoblastoma in infants, where it serves as a source of information, complementary to the Fundus or Ultrasound imaging. Here we present a framework to fully automatically segment the eye anatomy in the MRI based on 3D Active Shape Models (ASM), we validate the results and present a proof of concept to automatically segment pathological eyes. Material and Methods: Manual and automatic segmentation were performed on 24 images of healthy children eyes (3.29±2.15 years). Imaging was performed using a 3T MRI scanner. The ASM comprises the lens, the vitreous humor, the sclera and the cornea. The model was fitted by first automatically detecting the position of the eye center, the lens and the optic nerve, then aligning the model and fitting it to the patient. We validated our segmentation method using a leave-one-out cross validation. The segmentation results were evaluated by measuring the overlap using the Dice Similarity Coefficient (DSC) and the mean distance error. Results: We obtained a DSC of 94.90±2.12% for the sclera and the cornea, 94.72±1.89% for the vitreous humor and 85.16±4.91% for the lens. The mean distance error was 0.26±0.09mm. The entire process took 14s on average per eye. Conclusion: We provide a reliable and accurate tool that enables clinicians to automatically segment the sclera, the cornea, the vitreous humor and the lens using MRI. We additionally present a proof of concept for fully automatically segmenting pathological eyes. This tool reduces the time needed for eye shape delineation and thus can help clinicians when planning eye treatment and confirming the extent of the tumor.
Resumo:
Femoroacetabular impingement (FAI) is a dynamic conflict of the hip defined by a pathological, early abutment of the proximal femur onto the acetabulum or pelvis. In the past two decades, FAI has received increasing focus in both research and clinical practice as a cause of hip pain and prearthrotic deformity. Anatomical abnormalities such as an aspherical femoral head (cam-type FAI), a focal or general overgrowth of the acetabulum (pincer-type FAI), a high riding greater or lesser trochanter (extra-articular FAI), or abnormal torsion of the femur have been identified as underlying pathomorphologies. Open and arthroscopic treatment options are available to correct the deformity and to allow impingement-free range of motion. In routine practice, diagnosis and treatment planning of FAI is based on clinical examination and conventional imaging modalities such as standard radiography, magnetic resonance arthrography (MRA), and computed tomography (CT). Modern software tools allow three-dimensional analysis of the hip joint by extracting pelvic landmarks from two-dimensional antero-posterior pelvic radiographs. An object-oriented cross-platform program (Hip2Norm) has been developed and validated to standardize pelvic rotation and tilt on conventional AP pelvis radiographs. It has been shown that Hip2Norm is an accurate, consistent, reliable and reproducible tool for the correction of selected hip parameters on conventional radiographs. In contrast to conventional imaging modalities, which provide only static visualization, novel computer assisted tools have been developed to allow the dynamic analysis of FAI pathomechanics. In this context, a validated, CT-based software package (HipMotion) has been introduced. HipMotion is based on polygonal three-dimensional models of the patient’s pelvis and femur. The software includes simulation methods for range of motion, collision detection and accurate mapping of impingement areas. A preoperative treatment plan can be created by performing a virtual resection of any mapped impingement zones both on the femoral head-neck junction, as well as the acetabular rim using the same three-dimensional models. The following book chapter provides a summarized description of current computer-assisted tools for the diagnosis and treatment planning of FAI highlighting the possibility for both static and dynamic evaluation, reliability and reproducibility, and its applicability to routine clinical use.
Resumo:
Three-month anticoagulation is recommended to treat provoked or first distal deep-vein thrombosis (DVT), and indefinite-duration anticoagulation should be considered for patients with unprovoked proximal, unprovoked recurrent, or cancer-associated DVT. In the prospective Outpatient Treatment of Deep Vein Thrombosis in Switzerland (OTIS-DVT) Registry of 502 patients with acute objectively confirmed lower extremity DVT (59% provoked or first distal DVT; 41% unprovoked proximal, unprovoked recurrent, or cancer-associated DVT) from 53 private practices and 11 hospitals, we investigated the planned duration of anticoagulation at the time of treatment initiation. The decision to administer limited-duration anticoagulation therapy was made in 343 (68%) patients with a median duration of 107 (interquartile range 91-182) days for provoked or first distal DVT, and 182 (interquartile range 111-184) days for unprovoked proximal, unprovoked recurrent, or cancer-associated DVT. Among patients with provoked or first distal DVT, anticoagulation was recommended for < 3 months in 11%, 3 months in 63%, and for an indefinite period in 26%. Among patients with unprovoked proximal, unprovoked recurrent, or cancer-associated DVT, anticoagulation was recommended for < 6 months in 22%, 6-12 months in 38%, and for an indefinite period in 40%. Overall, there was more frequent planning of indefinite-duration therapy from hospital physicians as compared with private practice physicians (39% vs. 28%; p=0.019). Considerable inconsistency in planning the duration of anticoagulation therapy mandates an improvement in risk stratification of outpatients with acute DVT.
Resumo:
OBJECTIVES: Various imaging techniques, including conventional radiography and computed tomography, are proposed to localize the mandibular canal prior to implant surgery. The aim of this study is to determine the incidence of altered mental nerve sensation after implant placement in the posterior segment of the mandible when a panoramic radiograph is the only preoperative imaging technique used. MATERIAL AND METHODS: The study included 1527 partially and totally edentulous patients who had consecutively received 2584 implants in the posterior segment of the mandible. Preoperative bone height was evaluated from the top of the alveolar crest to the superior border of the mandibular canal on a standard panoramic radiograph. A graduated implant scale from the implant manufacturer was used and 2 mm were subtracted as a safety margin to determine the length of the implant to be inserted. RESULTS: No permanent sensory disturbances of the inferior alveolar nerve were observed. There were two cases of postoperative paresthesia, representing 2/2584 (0.08%) of implants inserted in the posterior segment of the mandible or 2/1527 (0.13%) of patients. These sensory disturbances were minor, lasted for 3 and 6 weeks and resolved spontaneously. CONCLUSIONS: Panoramic examination can be considered a safe preoperative evaluation procedure for routine posterior mandibular implant placement. Panoramic radiography is a quick, simple, low-cost and low-dose presurgical diagnostic tool. When a safety margin of at least 2 mm above the mandibular canal is respected, panoramic radiography appears to be sufficient to evaluate available bone height prior to insertion of posterior mandibular implants; cross-sectional imaging techniques may not be necessary.
Resumo:
BACKGROUND: Newborns with hypoplastic left heart syndrome (HLHS) or right heart syndrome or other malformations with a single ventricle physiology and associated hypoplasia of the great arteries continue to be a challenge in terms of survival. The vast majority of these forms of congenital heart defects relate to abnormal morphogenesis during early intrauterine development and can be diagnosed accurately by fetal echocardiography. Early knowledge of these conditions not only permits a better understanding of the progression of these malformations but encourages some researchers to explore new minimally invasive therapeutic options with a view to early pre- and postnatal cardiac palliation. DATA SOURCES: PubMed database was searched with terms of "congenital heart defects", "fetal echocardiography" and "neonatal cardiac surgery". RESULTS: At present, early prenatal detection has been applied for monitoring pregnancy to avoid intrauterine cardiac decompensation. In principle, the majority of congenital heart defects can be diagnosed by prenatal echocardiography and the detection rate is 85%-95% at tertiary perinatal centers. The majority, particularly of complex congenital lesions, show a steadily progressive course including subsequent secondary phenomena such as arrhythmias or myocardial insufficiency. So prenatal treatment of an abnormal fetus is an area of perinatal medicine that is undergoing a very dynamic development. Early postnatal treatment is established for some time, and prenatal intervention or palliation is at its best experimental stage in individual cases. CONCLUSION: The upcoming expansion of fetal cardiac intervention to ameliorate critically progressive fetal lesions intensifies the need to address issues about the adequacy of technological assessment and patient selection as well as the morbidity of those who undergo these procedures.