63 resultados para Strategic Substitutes
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Soil erosion models and soil erosion risk maps are often used as indicators to assess potential soil erosion in order to assist policy decisions. This paper shows the scientific basis of the soil erosion risk map of Switzerland and its application in policy and practice. Linking a USLE/RUSLE-based model approach (AVErosion) founded on multiple flow algorithms and the unit contributing area concept with an extremely precise and high-resolution digital terrain model (2 m × 2 m grid) using GIS allows for a realistic assessment of the potential soil erosion risk, on single plots, i.e. uniform and comprehensive for the agricultural area of Switzerland (862,579 ha in the valley area and the lower mountain regions). The national or small-scale soil erosion prognosis has thus reached a level heretofore possible only in smaller catchment areas or single plots. Validation was carried out using soil loss data from soil erosion damage mappings in the field from long-term monitoring in different test areas. 45% of the evaluated agricultural area of Switzerland was classified as low potential erosion risk, 12% as moderate potential erosion risk, and 43% as high potential erosion risk. However, many of the areas classified as high potential erosion risk are located at the transition from valley to mountain zone, where many areas are used as permanent grassland, which drastically lowers their current erosion risk. The present soil erosion risk map serves on the one hand to identify and prioritise the high-erosion risk areas, and on the other hand to promote awareness amongst farmers and authorities. It was published on the internet and will be made available to the authorities in digital form. It is intended as a tool for simplifying and standardising enforcement of the legal framework for soil erosion prevention in Switzerland. The work therefore provides a successful example of cooperation between science, policy and practice.
Resumo:
PURPOSE: Limited information is available concerning changes in the urodynamic characteristics of orthotopic bladder substitutes with time. Therefore, we compared early and late urodynamic results in patients with an ileal orthotopic bladder substitute combined with an afferent tubular segment. MATERIALS AND METHODS: Of 139 patients surviving at least 5 years after cystoprostatectomy and ileal orthotopic bladder substitution with an afferent tubular segment 119 underwent urodynamic assessment, including 66 at a median of 9 months (early) and 77 at a median of 62 months (late). Of these patients 24 were assessed at each time point. Simultaneously all patients were asked to complete a bladder diary and questionnaire regarding continence for at least 3 days in the week preceding the urodynamic study. RESULTS: Urodynamic parameters were comparable in patients who were evaluated early and late postoperatively. In addition, median values at early and late urodynamic evaluation in the 24 patients with the 2 examinations showed no statistically significant differences for volume at first desire to void (300 vs 333 ml, p = 0.85), pressure at first desire to void (12 vs 13 cm H2O, p = 0.57), maximum cystometric capacity (450 vs 453 ml, p = 0.84), end filling pressure (19 vs 20 cm H2O, p = 0.17), reservoir compliance (25 vs 28 ml/cm H2O, p = 0.58) or post-void residual urine volume (5 vs 15 ml, p = 0.27). CONCLUSIONS: Urodynamic results after 5 years of living with an ileal orthotopic bladder substitute with an afferent tubular segment show grossly unchanged urodynamic characteristics. Patients maintain a reservoir capacity and micturition pattern consistent with a normal life-style. Reservoir pressure remained low, thereby protecting and preserving upper tract function. To achieve these results patients must be regularly followed, and the causes of bacteriuria, increased post-void residual urine and bladder outlet obstruction must be recognized and dealt with accordingly.
Resumo:
The repair of bone defects with biomaterials depends on a sufficient vascularization of the implantation site. We analyzed the effect of pore size on the vascularization and osseointegration of biphasic calcium phosphate particles, which were implanted into critical-sized cranial defects in Balb/c mice. Dense particles and particles with pore sizes in the ranges 40-70, 70-140, 140-210, and 210-280 mum were tested (n = 6 animals per group). Angiogenesis, vascularization, and leukocyte-endothelium interactions were monitored for 28 days by intravital microscopy. The formation of new bone and the bone-interface contact (BIC) were determined histomorphometrically. Twenty-eight days after implantation, the functional capillary density was significantly higher with ceramic particles whose pore sizes exceeded 140 mum [140-210 mum: 6.6 (+/-0.8) mm/mm(2); 210-280 mum: 7.3 (+/-0.6) mm/mm(2)] than with those whose pore sizes were lesser than 140 mum [40-70 mum: 5.3 (+/-0.4) mm/mm(2); 70-140 mum: 5.6 (+/-0.3) mm/mm(2)] or with dense particles [5.7 (+/-0.8) mm/mm(2)]. The volume of newly-formed bone deposited within the implants increased as the pore size increased [40-70 mum: 0.07 (+/-0.02) mm(3); 70-140 mum: 0.10 (+/-0.06) mm(3); 140-210 mum: 0.13 (+/-0.05) mm(3); 210-280 mum: 0.15 (+/-0.06) mm(3)]. Similar results were observed for the BIC. The data demonstrates pore size to be a critical parameter governing the dynamic processes of vascularization and osseointegration of bone substitutes. (c) 2007 Wiley Periodicals, Inc. J Biomed Mater Res, 2007.