38 resultados para Stores

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sarco(endo)plasmic reticulum Ca2+-ATPase isoform 2 (SERCA2) pumps belong to the family of Ca2+-ATPases responsible for the maintenance of calcium in the endoplasmic reticulum. In epidermal keratinocytes, SERCA2-controlled calcium stores are involved in cell cycle exit and onset of terminal differentiation. Hence, their dysfunction was thought to provoke impaired keratinocyte cohesion and hampered terminal differentiation. Here, we assessed cultured keratinocytes and skin biopsies from a canine family with an inherited skin blistering disorder. Cells from lesional and phenotypically normal areas of one of these dogs revealed affected calcium homeostasis due to depleted SERCA2-gated stores. In phenotypically normal patient cells, this defect compromised upregulation of p21(WAF1) and delayed the exit from the cell cycle. Despite this abnormality it failed to impede the terminal differentiation process in the long term but instead coincided with enhanced apoptosis and appearance of chronic wounds, suggestive of secondary mutations. Collectively, these findings provide the first survey on phenotypic consequences of depleted SERCA-gated stores for epidermal homeostasis that explain how depleted SERCA2 calcium stores provoke focal lesions rather than generalized dermatoses, a phenotype highly reminiscent of the human genodermatosis Darier disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Intramyocellular lipids (IMCL) and muscle glycogen provide local energy during exercise (EX). The objective of this study was to clarify the role of high versus low IMCL levels at equal initial muscle glycogen on fuel selection during EX. After 3 h of depleting exercise, 11 endurance-trained males consumed in a crossover design a high-carbohydrate (7 g kg(-1) day(-1)) low-fat (0.5 g kg(-1) day(-1)) diet (HC) for 2.5 days or the same diet with 3 g kg(-1) day(-1) more fat provided during the last 1.5 days of diet (four meals; HCF). Respiratory exchange, thigh muscle substrate breakdown by magnetic resonance spectroscopy, and plasma FFA oxidation ([1-(13)C]palmitate) were measured during EX (3 h, 50% W (max)). Pre-EX IMCL concentrations were 55% higher after HCF. IMCL utilization during EX in HCF was threefold greater compared with HC (P < 0.001) and was correlated with aerobic power and highly correlated (P < 0.001) with initial content. Glycogen values and decrements during EX were similar. Whole-body fat oxidation (Fat(ox)) was similar overall and plasma FFA oxidation smaller (P < 0.05) during the first EX hour after HCF. Myocellular fuels contributed 8% more to whole-body energy demands after HCF (P < 0.05) due to IMCL breakdown (27% Fat(ox)). After EX, when both IMCL and glycogen concentrations were again similar across trials, a simulated 20-km time-trial showed no difference in performance between diets. In conclusion, IMCL concentrations can be increased during a glycogen loading diet by consuming additional fat for the last 1.5 days. During subsequent exercise, IMCL decrease in proportion to their initial content, partly in exchange for peripheral fatty acids.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to investigate whether a decrease in carnitine body stores is a risk factor for valproic acid (VPA)-associated hepatotoxicity and to explore the effects of VPA on carnitine homeostasis in mice with decreased carnitine body stores. Therefore, heterozygous juvenile visceral steatosis (jvs)(+/-) mice, an animal model with decreased carnitine stores caused by impaired renal reabsorption of carnitine, and the corresponding wild-type mice were treated with subtoxic oral doses of VPA (0.1 g/g b.wt./day) for 2 weeks. In jvs(+/-) mice, but not in wild-type mice, treatment with VPA was associated with the increased plasma activity of aspartate aminotransferase and alkaline phosphatase. Furthermore, jvs(+/-) mice revealed reduced palmitate metabolism assessed in vivo and microvesicular steatosis of the liver. The creatine kinase activity was not affected by treatment with VPA. In liver mitochondria isolated from mice that were treated with VPA, oxidative metabolism of l-glutamate, succinate, and palmitate, as well as beta-oxidation of palmitate, were decreased compared to vehicle-treated wild-type mice or jvs(+/-) mice. In comparison to vehicle-treated wild-type mice, vehicle-treated jvs(+/-) mice had decreased carnitine plasma and tissue levels. Treatment with VPA was associated with an additional decrease in carnitine plasma (wild-type mice and jvs(+/-) mice) and tissue levels (jvs(+/-) mice) and a shift of the carnitine pools toward short-chain acylcarnitines. We conclude that jvs(+/-) mice reveal a more accentuated hepatic toxicity by VPA than the corresponding wild-type mice. Therefore, decreased carnitine body stores can be regarded as a risk factor for hepatotoxicity associated with VPA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glycogen levels in liver and skeletal muscle assessed non-invasively using magnetic resonance spectroscopy after a 48-h pre-study period including a standardized diet and withdrawal from exercise did not differ between individuals with well-controlled Type 1 DM and matched healthy controls.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Intramyocellular lipids (IMCL) are flexible fuel stores that are depleted by physical exercise and replenished by fat intake. IMCL or their degradation products are thought to interfere with insulin signaling thereby contributing to insulin resistance. From a practical point of view it is desirable to deplete IMCL prior to replenishing them. So far, it is not clear for how long and at which intensity subjects have to exercise in order to deplete IMCL. We therefore aimed at developing a standardized exercise protocol that is applicable to subjects over a broad range of exercise capacity and insulin sensitivity and allows measuring reliably reduced IMCL levels.Twelve male subjects, including four diabetes type 2 patients, with wide ranges of exercise capacity (VO(2)peak per total body weight 27.9-55.8 ml x kg(-1) x min(-1)), insulin sensitivity (glucose infusion rate per lean body mass 4.7-15.3 mg x min(-1) x kg(-1)), and BMI (21.7-31.5 kg x m(-2)), respectively, were enrolled. Using (1)H magnetic resonance spectroscopy ((1)H-MRS), IMCL was measured in m.tibialis anterior and m.vastus intermedius before and during a depletion protocol of a week, consisting of a moderate additional physical activity (1 h daily at 60% VO(2)peak) and modest low-fat (10-15%) diet.Absolute IMCL-levels were significantly reduced in both muscles during the first 3 days and stayed constant for the next 3 days of an identical diet/exercise-scheme. These reduced IMCL levels were independent of insulin sensitivity, yet a tendency to lower depleted IMCL levels has been observed in subjects with higher VO(2)peak.The proposed protocol is feasible in subjects with large differences in exercise capacity, insulin sensitivity, and BMI, leading to reduced IMCL levels that neither depend on the exact duration of the depletion protocol nor on insulin sensitivity. This allows for a standardized preparation of IMCL levels either for correlation with other physiological parameters or for replenishment studies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Both liver and muscle glycogen stores play a fundamental role in exercise and fatigue, but the effect of different CHO sources on liver glycogen synthesis in humans is unclear. The aim was to compare the effect of maltodextrin (MD) drinks containing galactose, fructose, or glucose on postexercise liver glycogen synthesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Carnosine (β-alanyl-L-histidine) is found in high concentrations in skeletal muscle and chronic β-alanine (BA) supplementation can increase carnosine content. This placebo-controlled, double-blind study compared two different 8-week BA dosing regimens on the time course of muscle carnosine loading and 8-week washout, leading to a BA dose-response study with serial muscle carnosine assessments throughout. Thirty-one young males were randomized into three BA dosing groups: (1) high-low: 3.2 g BA/day for 4 weeks, followed by 1.6 g BA/day for 4 weeks; (2) low-low: 1.6 g BA/day for 8 weeks; and (3) placebo. Muscle carnosine in tibialis-anterior (TA) and gastrocnemius (GA) muscles was measured by 1H-MRS at weeks 0, 2, 4, 8, 12 and 16. Flushing symptoms and blood clinical chemistry were trivial in all three groups and there were no muscle carnosine changes in the placebo group. During the first 4 weeks, the increase for high-low (TA 2.04 mmol/kgww, GA 1.75 mmol/kgww) was ~twofold greater than low-low (TA 1.12 mmol/kgww, GA 0.80 mmol/kgww). 1.6 g BA/day significantly increased muscle carnosine within 2 weeks and induced continual rises in already augmented muscle carnosine stores (week 4-8, high-low regime). The dose-response showed a carnosine increase of 2.01 mmol/kgww per 100 g of consumed BA, which was only dependent upon the total accumulated BA consumed (within a daily intake range of 1.6-3.2 g BA/day). Washout rates were gradual (0.18 mmol/kgww and 0.43 mmol/kgww/week; ~2%/week). In summary, the absolute increase in muscle carnosine is only dependent upon the total BA consumed and is not dependent upon baseline muscle carnosine, the muscle type, or the daily amount of supplemented BA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Intramyocellular lipid (IMCL) variations in older men are poorly explored. In young adults, IMCL can be influenced by both diet and exercise interventions; this flexibility is related to aerobic fitness. We evaluated in active older adults the influence of maximal aerobic capacity on short-term diet and exercise-induced variations in IMCL stores.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The proposition posed is that the value of amino acid conjugation to the organism is not, as in the traditional view, to use amino acids for the detoxication of aromatic acids. Rather, the converse is more likely, to use aromatic acids that originate from the diet and gut microbiota to assist in the regulation of body stores of amino acids, such as glycine, glutamate, and, in certain invertebrates, arginine, that are key neurotransmitters in the central nervous system (CNS). As such, the amino acid conjugations are not so much detoxication reactions, rather they are homeostatic and neuroregulatory processes. Experimental data have been culled in support of this hypothesis from a broad range of scientific and clinical literature. Such data include the low detoxication value of amino acid conjugations and the Janus nature of certain amino acids that are both neurotransmitters and apparent conjugating agents. Amino acid scavenging mechanisms in blood deplete brain amino acids. Amino acids glutamate and glycine when trafficked from brain are metabolized to conjugates of aromatic acids in hepatic mitochondria and then irreversibly excreted into urine. This process is used clinically to deplete excess nitrogen in cases of urea cycle enzymopathies through excretion of glycine or glutamine as their aromatic acid conjugates. Untoward effects of high-dose phenylacetic acid surround CNS toxicity. There appears to be a relationship between extent of glycine scavenging by benzoic acid and psychomotor function. Glycine and glutamine scavenging by conjugation with aromatic acids may have important psychosomatic consequences that link diet to health, wellbeing, and disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Clopidogrel is a prodrug used widely as a platelet aggregation inhibitor. After intestinal absorption, approximately 90% is converted to inactive clopidogrel carboxylate and 10% via a two-step procedure to the active metabolite containing a mercapto group. Hepatotoxicity is a rare but potentially serious adverse reaction associated with clopidogrel. The aim of this study was to find out the mechanisms and susceptibility factors for clopidogrel-associated hepatotoxicity. In primary human hepatocytes, clopidogrel (10 and 100μM) was cytotoxic only after cytochrome P450 (CYP) induction by rifampicin. Clopidogrel (10 and 100μM) was also toxic for HepG2 cells expressing human CYP3A4 (HepG2/CYP3A4) and HepG2 cells co-incubated with CYP3A4 supersomes (HepG2/CYP3A4 supersome), but not for wild-type HepG2 cells (HepG2/wt). Clopidogrel (100μM) decreased the cellular glutathione content in HepG2/CYP3A4 supersome and triggered an oxidative stress reaction (10 and 100µM) in HepG2/CYP3A4, but not in HepG2/wt. Glutathione depletion significantly increased the cytotoxicity of clopidogrel (10 and 100µM) in HepG2/CYP3A4 supersome. Co-incubation with 1μM ketoconazole or 10mM glutathione almost completely prevented the cytotoxic effect of clopidogrel in HepG2/CYP3A4 and HepG2/CYP3A4 supersome. HepG2/CYP3A4 incubated with 100μM clopidogrel showed mitochondrial damage and cytochrome c release, eventually promoting apoptosis and/or necrosis. In contrast to clopidogrel, clopidogrel carboxylate was not toxic for HepG2/wt or HepG2/CYP3A4 up to 100µM. In conclusion, clopidogrel incubated with CYP3A4 is associated with the formation of metabolites that are toxic for hepatocytes and can be trapped by glutathione. High CYP3A4 activity and low cellular glutathione stores may be risk factors for clopidogrel-associated hepatocellular toxicity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Ca(2+) content of the sarcoplasmic reticulum (SR) of cardiac myocytes is thought to play a role in the regulation and termination of SR Ca(2+) release through the ryanodine receptors (RyRs). Experimentally altering the amount of Ca(2+) within the SR with the membrane-permeant low affinity Ca(2+) chelator TPEN could improve our understanding of the mechanism(s) by which SR Ca(2+) content and SR Ca(2+) depletion can influence Ca(2+) release sensitivity and termination. We applied laser-scanning confocal microscopy to examine SR Ca(2+) release in freshly isolated ventricular myocytes loaded with fluo-3, while simultaneously recording membrane currents using the whole-cell patch-clamp technique. Following application of TPEN, local spontaneous Ca(2+) releases increased in frequency and developed into cell-wide Ca(2+) waves. SR Ca(2+) load after TPEN application was found to be reduced to about 60% of control. Isolated cardiac RyRs reconstituted into lipid bilayers exhibited a two-fold increase of their open probability. At the low concentration used (20-40muM), TPEN did not significantly inhibit the SR-Ca(2+)-ATPase in SR vesicles. These results indicate that TPEN, traditionally used as a low affinity Ca(2+) chelator in intracellular Ca(2+) stores, may also act directly on the RyRs inducing an increase in their open probability. This in turn results in an increased Ca(2+) leak from the SR leading to its Ca(2+) depletion. Lowering of SR Ca(2+) content may be a mechanism underlying the recently reported cardioprotective and antiarrhythmic features of TPEN.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cross-linking platelet GPIb with the snake C-type lectin echicetin provides a specific technique for activation via this receptor. This allows GPIb-dependent mechanisms to be studied without the necessity for shear stress-induced binding of von Willebrand factor or primary alpha(IIb)beta(3) involvement. We already showed that platelets are activated, including tyrosine phosphorylation, by echicetin-IgMkappa-induced GPIb cross-linking. We now investigate the mechanism further and demonstrate that platelets, without modulator reagents, spread directly on an echicetin-coated surface, by a GPIb-specific mechanism, causing exocytosis of alpha-granule markers (P-selectin) and activation of alpha(IIb)beta(3). This spreading requires actin polymerization and release of internal calcium stores but is not dependent on external calcium nor on src family tyrosine kinases. Cross-linking of GPIb complex molecules on platelets, either in suspension or via specific surface attachment, is sufficient to induce platelet activation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVE: Cellular Ca(2+) waves are understood as reaction-diffusion systems sustained by Ca(2+)-induced Ca(2+) release (CICR) from Ca(2+) stores. Given the recently discovered sensitization of Ca(2+) release channels (ryanodine receptors; RyRs) of the sarcoplasmic reticulum (SR) by luminal SR Ca(2+), waves could also be driven by RyR sensitization, mediated by SR overloading via Ca(2+) pump (SERCA), acting in tandem with CICR. METHODS: Confocal imaging of the Ca(2+) indicator fluo-3 was combined with UV-flash photolysis of caged compounds and the whole-cell configuration of the patch clamp technique to carry out these experiments in isolated guinea pig ventricular cardiomyocytes. RESULTS: Upon sudden slowing of the SERCA in cardiomyocytes with a photoreleased inhibitor, waves indeed decelerated immediately. No secondary changes of Ca(2+) signaling or SR Ca(2+) content due to SERCA inhibition were observed in the short time-frame of these experiments. CONCLUSIONS: Our findings are consistent with Ca(2+) loading resulting in a zone of RyR 'sensitization' traveling within the SR, but inconsistent with CICR as the predominant mechanism driving the Ca(2+) waves. This alternative mode of RyR activation is essential to fully conceptualize cardiac arrhythmias triggered by spontaneous Ca(2+) release.