34 resultados para Stochastic optimization model
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Knowledge on the relative importance of alternative sources of human campylobacteriosis is important in order to implement effective disease prevention measures. The objective of this study was to assess the relative importance of three key exposure pathways (travelling abroad, poultry meat, pet contact) for different patient age groups in Switzerland. With a stochastic exposure model data on Campylobacter incidence for the years 2002-2007 were linked with data for the three exposure pathways and the results of a case-control study. Mean values for the population attributable fractions (PAF) over all age groups and years were 27% (95% CI 17-39) for poultry consumption, 27% (95% CI 22-32) for travelling abroad, 8% (95% CI 6-9) for pet contact and 39% (95% CI 25-50) for other risk factors. This model provided robust results when using data available for Switzerland, but the uncertainties remained high. The output of the model could be improved if more accurate input data are available to estimate the infection rate per exposure. In particular, the relatively high proportion of cases attributed to 'other risk factors' requires further attention.
Resumo:
Background Recent work on the complexity of life highlights the roles played by evolutionary forces at different levels of individuality. One of the central puzzles in explaining transitions in individuality for entities ranging from complex cells, to multicellular organisms and societies, is how different autonomous units relinquish control over their functions to others in the group. In addition to the necessity of reducing conflict over effecting specialized tasks, differentiating groups must control the exploitation of the commons, or else be out-competed by more fit groups. Results We propose that two forms of conflict – access to resources within groups and representation in germ line – may be resolved in tandem through individual and group-level selective effects. Specifically, we employ an optimization model to show the conditions under which different within-group social behaviors (cooperators producing a public good or cheaters exploiting the public good) may be selected to disperse, thereby not affecting the commons and functioning as germ line. We find that partial or complete dispersal specialization of cheaters is a general outcome. The propensity for cheaters to disperse is highest with intermediate benefit:cost ratios of cooperative acts and with high relatedness. An examination of a range of real biological systems tends to support our theory, although additional study is required to provide robust tests. Conclusion We suggest that trait linkage between dispersal and cheating should be operative regardless of whether groups ever achieve higher levels of individuality, because individual selection will always tend to increase exploitation, and stronger group structure will tend to increase overall cooperation through kin selected benefits. Cheater specialization as dispersers offers simultaneous solutions to the evolution of cooperation in social groups and the origin of specialization of germ and soma in multicellular organisms.
Resumo:
OBJECTIVES: Treatment as prevention depends on retaining HIV-infected patients in care. We investigated the effect on HIV transmission of bringing patients lost to follow up (LTFU) back into care. DESIGN: Mathematical model. METHODS: Stochastic mathematical model of cohorts of 1000 HIV-infected patients on antiretroviral therapy (ART), based on data from two clinics in Lilongwe, Malawi. We calculated cohort viral load (CVL; sum of individual mean viral loads each year) and used a mathematical relationship between viral load and transmission probability to estimate the number of new HIV infections. We simulated four scenarios: 'no LTFU' (all patients stay in care); 'no tracing' (patients LTFU are not traced); 'immediate tracing' (after missed clinic appointment); and, 'delayed tracing' (after six months). RESULTS: About 440 of 1000 patients were LTFU over five years. CVL (million copies/ml per 1000 patients) were 3.7 (95% prediction interval [PrI] 2.9-4.9) for no LTFU, 8.6 (95% PrI 7.3-10.0) for no tracing, 7.7 (95% PrI 6.2-9.1) for immediate, and 8.0 (95% PrI 6.7-9.5) for delayed tracing. Comparing no LTFU with no tracing the number of new infections increased from 33 (95% PrI 29-38) to 54 (95% PrI 47-60) per 1000 patients. Immediate tracing prevented 3.6 (95% PrI -3.3-12.8) and delayed tracing 2.5 (95% PrI -5.8-11.1) new infections per 1000. Immediate tracing was more efficient than delayed tracing: 116 and to 142 tracing efforts, respectively, were needed to prevent one new infection. CONCLUSION: Tracing of patients LTFU enhances the preventive effect of ART, but the number of transmissions prevented is small.
Resumo:
OBJECTIVES Mortality in patients starting antiretroviral therapy (ART) is higher in Malawi and Zambia than in South Africa. We examined whether different monitoring of ART (viral load [VL] in South Africa and CD4 count in Malawi and Zambia) could explain this mortality difference. DESIGN Mathematical modelling study based on data from ART programmes. METHODS We used a stochastic simulation model to study the effect of VL monitoring on mortality over 5 years. In baseline scenario A all parameters were identical between strategies except for more timely and complete detection of treatment failure with VL monitoring. Additional scenarios introduced delays in switching to second-line ART (scenario B) or higher virologic failure rates (due to worse adherence) when monitoring was based on CD4 counts only (scenario C). Results are presented as relative risks (RR) with 95% prediction intervals and percent of observed mortality difference explained. RESULTS RRs comparing VL with CD4 cell count monitoring were 0.94 (0.74-1.03) in scenario A, 0.94 (0.77-1.02) with delayed switching (scenario B) and 0.80 (0.44-1.07) when assuming a 3-times higher rate of failure (scenario C). The observed mortality at 3 years was 10.9% in Malawi and Zambia and 8.6% in South Africa (absolute difference 2.3%). The percentage of the mortality difference explained by VL monitoring ranged from 4% (scenario A) to 32% (scenarios B and C combined, assuming a 3-times higher failure rate). Eleven percent was explained by non-HIV related mortality. CONCLUSIONS VL monitoring reduces mortality moderately when assuming improved adherence and decreased failure rates.
Resumo:
Time-dependent refractoriness of calcium (Ca2+) release in cardiac myocytes is an important factor in determining whether pro-arrhythmic release patterns develop. At the subcellular level of the Ca2+ spark, recent studies have suggested that recovery of spark amplitude is controlled by local sarcoplasmic reticulum (SR) refilling whereas refractoriness of spark triggering depends on both refilling and the sensitivity of the ryanodine receptor (RyR) release channels that produce sparks. Here we studied regulation of Ca2+ spark refractoriness in mouse ventricular myocytes by examining how β-adrenergic stimulation influenced sequences of Ca2+ sparks originating from individual RyR clusters. Our protocol allowed us to separately measure recovery of spark amplitude and delays between successive sparks, and data were interpreted quantitatively through simulations with a stochastic mathematical model. We found that, compared with spark sequences measured under control conditions: (1) β-adrenergic stimulation with isoproterenol accelerated spark amplitude recovery and decreased spark-to-spark delays; (2) activating protein kinase A (PKA) with forskolin accelerated amplitude recovery but did not affect spark-to-spark delays; (3) inhibiting PKA with H89 retarded amplitude recovery and increased spark- to-spark delays; (4) preventing phosphorylation of the RyR at serine 2808 with a knock-in mouse prevented the decrease in spark-to-spark delays seen with β-adrenergic stimulation; (5) inhibiting either PKA or Ca2+/calmodulin-dependent protein kinase II (CaMKII) during β-adrenergic stimulation prevented the decrease in spark-to-spark delays seen) without inhibition. The results suggest that activation of either PKA or CaMKII is sufficient to speed SR refilling, but activation of both kinases appears necessary to observe increased RyR sensitivity. The data provide novel insight into β-adrenergic regulation of Ca2+ release refractoriness in mouse myocytes.
Resumo:
Foot-and-mouth disease (FMD) is a highly contagious disease that caused several large outbreaks in Europe in the last century. The last important outbreak in Switzerland took place in 1965/66 and affected more than 900 premises and more than 50,000 animals were slaughtered. Large-scale emergency vaccination of the cattle and pig population has been applied to control the epidemic. In recent years, many studies have used infectious disease models to assess the impact of different disease control measures, including models developed for diseases exotic for the specific region of interest. Often, the absence of real outbreak data makes a validation of such models impossible. This study aimed to evaluate whether a spatial, stochastic simulation model (the Davis Animal Disease Simulation model) can predict the course of a Swiss FMD epidemic based on the available historic input data on population structure, contact rates, epidemiology of the virus, and quality of the vaccine. In addition, the potential outcome of the 1965/66 FMD epidemic without application of vaccination was investigated. Comparing the model outcomes to reality, only the largest 10% of the simulated outbreaks approximated the number of animals being culled. However, the simulation model highly overestimated the number of culled premises. While the outbreak duration could not be well reproduced by the model compared to the 1965/66 epidemic, it was able to accurately estimate the size of the area infected. Without application of vaccination, the model predicted a much higher mean number of culled animals than with vaccination, demonstrating that vaccination was likely crucial in disease control for the Swiss FMD outbreak in 1965/66. The study demonstrated the feasibility to analyze historical outbreak data with modern analytical tools. However, it also confirmed that predicted epidemics from a most carefully parameterized model cannot integrate all eventualities of a real epidemic. Therefore, decision makers need to be aware that infectious disease models are useful tools to support the decision-making process but their results are not equal valuable as real observations and should always be interpreted with caution.
Resumo:
Laser tissue soldering (LTS) is a promising technique for tissue fusion based on a heat-denaturation process of proteins. Thermal damage of the fused tissue during the laser procedure has always been an important and challenging problem. Particularly in LTS of arterial blood vessels strong heating of the endothelium should be avoided to minimize the risk of thrombosis. A precise knowledge of the temperature distribution within the vessel wall during laser irradiation is inevitable. The authors developed a finite element model (FEM) to simulate the temperature distribution within blood vessels during LTS. Temperature measurements were used to verify and calibrate the model. Different parameters such as laser power, solder absorption coefficient, thickness of the solder layer, cooling of the vessel and continuous vs. pulsed energy deposition were tested to elucidate their impact on the temperature distribution within the soldering joint in order to reduce the amount of further animal experiments. A pulsed irradiation with high laser power and high absorbing solder yields the best results.
Resumo:
Many methodologies dealing with prediction or simulation of soft tissue deformations on medical image data require preprocessing of the data in order to produce a different shape representation that complies with standard methodologies, such as mass–spring networks, finite element method s (FEM). On the other hand, methodologies working directly on the image space normally do not take into account mechanical behavior of tissues and tend to lack physics foundations driving soft tissue deformations. This chapter presents a method to simulate soft tissue deformations based on coupled concepts from image analysis and mechanics theory. The proposed methodology is based on a robust stochastic approach that takes into account material properties retrieved directly from the image, concepts from continuum mechanics and FEM. The optimization framework is solved within a hierarchical Markov random field (HMRF) which is implemented on the graphics processor unit (GPU See Graphics processing unit ).
Resumo:
Modeling of tumor growth has been performed according to various approaches addressing different biocomplexity levels and spatiotemporal scales. Mathematical treatments range from partial differential equation based diffusion models to rule-based cellular level simulators, aiming at both improving our quantitative understanding of the underlying biological processes and, in the mid- and long term, constructing reliable multi-scale predictive platforms to support patient-individualized treatment planning and optimization. The aim of this paper is to establish a multi-scale and multi-physics approach to tumor modeling taking into account both the cellular and the macroscopic mechanical level. Therefore, an already developed biomodel of clinical tumor growth and response to treatment is self-consistently coupled with a biomechanical model. Results are presented for the free growth case of the imageable component of an initially point-like glioblastoma multiforme tumor. The composite model leads to significant tumor shape corrections that are achieved through the utilization of environmental pressure information and the application of biomechanical principles. Using the ratio of smallest to largest moment of inertia of the tumor material to quantify the effect of our coupled approach, we have found a tumor shape correction of 20\% by coupling biomechanics to the cellular simulator as compared to a cellular simulation without preferred growth directions. We conclude that the integration of the two models provides additional morphological insight into realistic tumor growth behavior. Therefore, it might be used for the development of an advanced oncosimulator focusing on tumor types for which morphology plays an important role in surgical and/or radio-therapeutic treatment planning.
Resumo:
The hERG voltage-gated potassium channel mediates the cardiac I(Kr) current, which is crucial for the duration of the cardiac action potential. Undesired block of the channel by certain drugs may prolong the QT interval and increase the risk of malignant ventricular arrhythmias. Although the molecular determinants of hERG block have been intensively studied, not much is known about its stereoselectivity. Levo-(S)-bupivacaine was the first drug reported to have a higher affinity to block hERG than its enantiomer. This study strives to understand the principles underlying the stereoselectivity of bupivacaine block with the help of mutagenesis analyses and molecular modeling simulations. Electrophysiological measurements of mutated hERG channels allowed for the identification of residues involved in bupivacaine binding and stereoselectivity. Docking and molecular mechanics simulations for both enantiomers of bupivacaine and terfenadine (a non-stereoselective blocker) were performed inside an open-state model of the hERG channel. The predicted binding modes enabled a clear depiction of ligand-protein interactions. Estimated binding affinities for both enantiomers were consistent with electrophysiological measurements. A similar computational procedure was applied to bupivacaine enantiomers towards two mutated hERG channels (Tyr652Ala and Phe656Ala). This study confirmed, at the molecular level, that bupivacaine stereoselectively binds the hERG channel. These results help to lay the foundation for structural guidelines to optimize the cardiotoxic profile of drug candidates in silico.
Resumo:
Alternans of cardiac action potential duration (APD) is a well-known arrhythmogenic mechanism which results from dynamical instabilities. The propensity to alternans is classically investigated by examining APD restitution and by deriving APD restitution slopes as predictive markers. However, experiments have shown that such markers are not always accurate for the prediction of alternans. Using a mathematical ventricular cell model known to exhibit unstable dynamics of both membrane potential and Ca2+ cycling, we demonstrate that an accurate marker can be obtained by pacing at cycle lengths (CLs) varying randomly around a basic CL (BCL) and by evaluating the transfer function between the time series of CLs and APDs using an autoregressive-moving-average (ARMA) model. The first pole of this transfer function corresponds to the eigenvalue (λalt) of the dominant eigenmode of the cardiac system, which predicts that alternans occurs when λalt≤−1. For different BCLs, control values of λalt were obtained using eigenmode analysis and compared to the first pole of the transfer function estimated using ARMA model fitting in simulations of random pacing protocols. In all versions of the cell model, this pole provided an accurate estimation of λalt. Furthermore, during slow ramp decreases of BCL or simulated drug application, this approach predicted the onset of alternans by extrapolating the time course of the estimated λalt. In conclusion, stochastic pacing and ARMA model identification represents a novel approach to predict alternans without making any assumptions about its ionic mechanisms. It should therefore be applicable experimentally for any type of myocardial cell.