2 resultados para Stochastic dynamics
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Alternans of cardiac action potential duration (APD) is a well-known arrhythmogenic mechanism which results from dynamical instabilities. The propensity to alternans is classically investigated by examining APD restitution and by deriving APD restitution slopes as predictive markers. However, experiments have shown that such markers are not always accurate for the prediction of alternans. Using a mathematical ventricular cell model known to exhibit unstable dynamics of both membrane potential and Ca2+ cycling, we demonstrate that an accurate marker can be obtained by pacing at cycle lengths (CLs) varying randomly around a basic CL (BCL) and by evaluating the transfer function between the time series of CLs and APDs using an autoregressive-moving-average (ARMA) model. The first pole of this transfer function corresponds to the eigenvalue (λalt) of the dominant eigenmode of the cardiac system, which predicts that alternans occurs when λalt≤−1. For different BCLs, control values of λalt were obtained using eigenmode analysis and compared to the first pole of the transfer function estimated using ARMA model fitting in simulations of random pacing protocols. In all versions of the cell model, this pole provided an accurate estimation of λalt. Furthermore, during slow ramp decreases of BCL or simulated drug application, this approach predicted the onset of alternans by extrapolating the time course of the estimated λalt. In conclusion, stochastic pacing and ARMA model identification represents a novel approach to predict alternans without making any assumptions about its ionic mechanisms. It should therefore be applicable experimentally for any type of myocardial cell.
Resumo:
The variables involved in the equations that describe realistic synaptic dynamics always vary in a limited range. Their boundedness makes the synapses forgetful, not for the mere passage of time, but because new experiences overwrite old memories. The forgetting rate depends on how many synapses are modified by each new experience: many changes means fast learning and fast forgetting, whereas few changes means slow learning and long memory retention. Reducing the average number of modified synapses can extend the memory span at the price of a reduced amount of information stored when a new experience is memorized. Every trick which allows to slow down the learning process in a smart way can improve the memory performance. We review some of the tricks that allow to elude fast forgetting (oblivion). They are based on the stochastic selection of the synapses whose modifications are actually consolidated following each new experience. In practice only a randomly selected, small fraction of the synapses eligible for an update are actually modified. This allows to acquire the amount of information necessary to retrieve the memory without compromising the retention of old experiences. The fraction of modified synapses can be further reduced in a smart way by changing synapses only when it is really necessary, i.e. when the post-synaptic neuron does not respond as desired. Finally we show that such a stochastic selection emerges naturally from spike driven synaptic dynamics which read noisy pre and post-synaptic neural activities. These activities can actually be generated by a chaotic system.