12 resultados para Stochastic Model
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
The problem of estimating the numbers of motor units N in a muscle is embedded in a general stochastic model using the notion of thinning from point process theory. In the paper a new moment type estimator for the numbers of motor units in a muscle is denned, which is derived using random sums with independently thinned terms. Asymptotic normality of the estimator is shown and its practical value is demonstrated with bootstrap and approximative confidence intervals for a data set from a 31-year-old healthy right-handed, female volunteer. Moreover simulation results are presented and Monte-Carlo based quantiles, means, and variances are calculated for N in{300,600,1000}.
Resumo:
Asthma is an increasing health problem worldwide, but the long-term temporal pattern of clinical symptoms is not understood and predicting asthma episodes is not generally possible. We analyse the time series of peak expiratory flows, a standard measurement of airway function that has been assessed twice daily in a large asthmatic population during a long-term crossover clinical trial. Here we introduce an approach to predict the risk of worsening airflow obstruction by calculating the conditional probability that, given the current airway condition, a severe obstruction will occur within 30 days. We find that, compared with a placebo, a regular long-acting bronchodilator (salmeterol) that is widely used to improve asthma control decreases the risk of airway obstruction. Unexpectedly, however, a regular short-acting beta2-agonist bronchodilator (albuterol) increases this risk. Furthermore, we find that the time series of peak expiratory flows show long-range correlations that change significantly with disease severity, approaching a random process with increased variability in the most severe cases. Using a nonlinear stochastic model, we show that both the increased variability and the loss of correlations augment the risk of unstable airway function. The characterization of fluctuations in airway function provides a quantitative basis for objective risk prediction of asthma episodes and for evaluating the effectiveness of therapy.
Resumo:
In all European Union countries, chemical residues are required to be routinely monitored in meat. Good farming and veterinary practice can prevent the contamination of meat with pharmaceutical substances, resulting in a low detection of drug residues through random sampling. An alternative approach is to target-monitor farms suspected of treating their animals with antimicrobials. The objective of this project was to assess, using a stochastic model, the efficiency of these two sampling strategies. The model integrated data on Swiss livestock as well as expert opinion and results from studies conducted in Switzerland. Risk-based sampling showed an increase in detection efficiency of up to 100% depending on the prevalence of contaminated herds. Sensitivity analysis of this model showed the importance of the accuracy of prior assumptions for conducting risk-based sampling. The resources gained by changing from random to risk-based sampling should be transferred to improving the quality of prior information.
Resumo:
Switzerland is currently porcine reproductive and respiratory syndrome virus (PRRSV) free, but semen imports from PRRSV-infected European countries are increasing. As the virus can be transmitted via semen, for example, when a free boar stud becomes infected, and the risk of its import in terms of PRRSV introduction is unknown, the annual probability to accidentally import the virus into Switzerland was estimated in a risk assessment. A quantitative stochastic model was set up with data comprised by import figures of 2010, interviews with boar stud owners and expert opinion. It resulted in an annual median number of 0.18 imported ejaculates (= imported semen doses from one collection from one donor) from PRRSV-infected boars. Hence, one infected ejaculate would be imported every 6 years and infect a mean of 10 sows. These results suggest that under current circumstances, there is a substantial risk of PRRSV introduction into Switzerland via imported boar semen and that measures to enhance safety of imports should be taken. The time from infection of a previously negative boar stud to its detection had the highest impact on the number of imported 'positive' ejaculates. Therefore, emphasis should be placed on PRRSV monitoring protocols in boar studs. Results indicated that a substantial increase in safety could only be achieved with much tighter sampling protocols than currently performed. Generally, the model could easily be customized for other applications like other countries or regions or even sow farms that want to estimate their risk when purchasing semen from a particular boar stud.
Resumo:
In recent years, there has been a renewed interest in the ecological consequences of individual trait variation within populations. Given that individual variability arises from evolutionary dynamics, to fully understand eco-evolutionary feedback loops, we need to pay special attention to how standing trait variability affects ecological dynamics. There is mounting empirical evidence that intra-specific phenotypic variation can exceed species-level means, but theoretical models of multi-trophic species coexistence typically neglect individual-level trait variability. What is needed are multispecies datasets that are resolved at the individual level that can be used to discriminate among alternative models of resource selection and species coexistence in food webs. Here, using one the largest individual-based datasets of a food web compiled to date, along with an individual trait-based stochastic model that incorporates Approximate Bayesian computation methods, we document intra-population variation in the strength of prey selection by different classes or predator phenotypes which could potentially alter the diversity and coexistence patterns of food webs. In particular, we found that strongly connected individual predators preferentially consumed common prey, whereas weakly connected predators preferentially selected rare prey. Such patterns suggest that food web diversity may be governed by the distribution of predator connectivity and individual trait variation in prey selection. We discuss the consequences of intra-specific variation in prey selection to assess fitness differences among predator classes (or phenotypes) and track longer term food web patterns of coexistence accounting for several phenotypes within each prey and predator species.
Resumo:
Alternans of cardiac action potential duration (APD) is a well-known arrhythmogenic mechanism which results from dynamical instabilities. The propensity to alternans is classically investigated by examining APD restitution and by deriving APD restitution slopes as predictive markers. However, experiments have shown that such markers are not always accurate for the prediction of alternans. Using a mathematical ventricular cell model known to exhibit unstable dynamics of both membrane potential and Ca2+ cycling, we demonstrate that an accurate marker can be obtained by pacing at cycle lengths (CLs) varying randomly around a basic CL (BCL) and by evaluating the transfer function between the time series of CLs and APDs using an autoregressive-moving-average (ARMA) model. The first pole of this transfer function corresponds to the eigenvalue (λalt) of the dominant eigenmode of the cardiac system, which predicts that alternans occurs when λalt≤−1. For different BCLs, control values of λalt were obtained using eigenmode analysis and compared to the first pole of the transfer function estimated using ARMA model fitting in simulations of random pacing protocols. In all versions of the cell model, this pole provided an accurate estimation of λalt. Furthermore, during slow ramp decreases of BCL or simulated drug application, this approach predicted the onset of alternans by extrapolating the time course of the estimated λalt. In conclusion, stochastic pacing and ARMA model identification represents a novel approach to predict alternans without making any assumptions about its ionic mechanisms. It should therefore be applicable experimentally for any type of myocardial cell.
Resumo:
Heart rate variability (HRV) exhibits fluctuations characterized by a power law behavior of its power spectrum. The interpretation of this nonlinear HRV behavior, resulting from interactions between extracardiac regulatory mechanisms, could be clinically useful. However, the involvement of intrinsic variations of pacemaker rate in HRV has scarcely been investigated. We examined beating variability in spontaneously active incubating cultures of neonatal rat ventricular myocytes using microelectrode arrays. In networks of mathematical model pacemaker cells, we evaluated the variability induced by the stochastic gating of transmembrane currents and of calcium release channels and by the dynamic turnover of ion channels. In the cultures, spontaneous activity originated from a mobile focus. Both the beat-to-beat movement of the focus and beat rate variability exhibited a power law behavior. In the model networks, stochastic fluctuations in transmembrane currents and stochastic gating of calcium release channels did not reproduce the spatiotemporal patterns observed in vitro. In contrast, long-term correlations produced by the turnover of ion channels induced variability patterns with a power law behavior similar to those observed experimentally. Therefore, phenomena leading to long-term correlated variations in pacemaker cellular function may, in conjunction with extracardiac regulatory mechanisms, contribute to the nonlinear characteristics of HRV.
Resumo:
Many methodologies dealing with prediction or simulation of soft tissue deformations on medical image data require preprocessing of the data in order to produce a different shape representation that complies with standard methodologies, such as mass–spring networks, finite element method s (FEM). On the other hand, methodologies working directly on the image space normally do not take into account mechanical behavior of tissues and tend to lack physics foundations driving soft tissue deformations. This chapter presents a method to simulate soft tissue deformations based on coupled concepts from image analysis and mechanics theory. The proposed methodology is based on a robust stochastic approach that takes into account material properties retrieved directly from the image, concepts from continuum mechanics and FEM. The optimization framework is solved within a hierarchical Markov random field (HMRF) which is implemented on the graphics processor unit (GPU See Graphics processing unit ).
Resumo:
The extracellular matrix molecule tenascin-C (TNC) is a major component of the cancer-specific matrix, and high TNC expression is linked to poor prognosis in several cancers. To provide a comprehensive understanding of TNC's functions in cancer, we established an immune-competent transgenic mouse model of pancreatic β-cell carcinogenesis with varying levels of TNC expression and compared stochastic neuroendocrine tumor formation in abundance or absence of TNC. We show that TNC promotes tumor cell survival, the angiogenic switch, more and leaky vessels, carcinoma progression, and lung micrometastasis. TNC downregulates Dickkopf-1 (DKK1) promoter activity through the blocking of actin stress fiber formation, activates Wnt signaling, and induces Wnt target genes in tumor and endothelial cells. Our results implicate DKK1 downregulation as an important mechanism underlying TNC-enhanced tumor progression through the provision of a proangiogenic tumor microenvironment.
Evaluation of control and surveillance strategies for classical swine fever using a simulation model
Resumo:
Classical swine fever (CSF) outbreaks can cause enormous losses in naïve pig populations. How to best minimize the economic damage and number of culled animals caused by CSF is therefore an important research area. The baseline CSF control strategy in the European Union and Switzerland consists of culling all animals in infected herds, movement restrictions for animals, material and people within a given distance to the infected herd and epidemiological tracing of transmission contacts. Additional disease control measures such as pre-emptive culling or vaccination have been recommended based on the results from several simulation models; however, these models were parameterized for areas with high animal densities. The objective of this study was to explore whether pre-emptive culling and emergency vaccination should also be recommended in low- to moderate-density areas such as Switzerland. Additionally, we studied the influence of initial outbreak conditions on outbreak severity to improve the efficiency of disease prevention and surveillance. A spatial, stochastic, individual-animal-based simulation model using all registered Swiss pig premises in 2009 (n=9770) was implemented to quantify these relationships. The model simulates within-herd and between-herd transmission (direct and indirect contacts and local area spread). By varying the four parameters (a) control measures, (b) index herd type (breeding, fattening, weaning or mixed herd), (c) detection delay for secondary cases during an outbreak and (d) contact tracing probability, 112 distinct scenarios were simulated. To assess the impact of scenarios on outbreak severity, daily transmission rates were compared between scenarios. Compared with the baseline strategy (stamping out and movement restrictions) vaccination and pre-emptive culling neither reduced outbreak size nor duration. Outbreaks starting in a herd with weaning piglets or fattening pigs caused higher losses regarding to the number of culled premises and were longer lasting than those starting in the two other index herd types. Similarly, larger transmission rates were estimated for these index herd type outbreaks. A longer detection delay resulted in more culled premises and longer duration and better transmission tracing increased the number of short outbreaks. Based on the simulation results, baseline control strategies seem sufficient to control CSF in low-medium animal-dense areas. Early detection of outbreaks is crucial and risk-based surveillance should be focused on weaning piglet and fattening pig premises.
Resumo:
Recent findings demonstrate that trees in deserts are efficient carbon sinks. It remains however unknown whether the Clean Development Mechanism will accelerate the planting of trees in Non Annex I dryland countries. We estimated the price of carbon at which a farmer would be indifferent between his customary activity and the planting of trees to trade carbon credits, along an aridity gradient. Carbon yields were simulated by means of the CO2FIX v3.1 model for Pinus halepensis with its respective yield classes along the gradient (Arid – 100mm to Dry Sub Humid conditions – 900mm). Wheat and pasture yields were predicted on somewhat similar nitrogen-based quadratic models, using 30 years of weather data to simulate moisture stress. Stochastic production, input and output prices were afterwards simulated on a Monte Carlo matrix. Results show that, despite the high levels of carbon uptake, carbon trading by afforesting is unprofitable anywhere along the gradient. Indeed, the price of carbon would have to raise unrealistically high, and the certification costs would have to drop significantly, to make the Clean Development Mechanism worthwhile for non annex I dryland countries farmers. From a government agency's point of view the Clean Development Mechanism is attractive. However, such agencies will find it difficult to demonstrate “additionality”, even if the rule may be somewhat flexible. Based on these findings, we will further discuss why the Clean Development Mechanism, a supposedly pro-poor instrument, fails to assist farmers in Non Annex I dryland countries living at minimum subsistence level.
Resumo:
Domestic dog rabies is an endemic disease in large parts of the developing world and also epidemic in previously free regions. For example, it continues to spread in eastern Indonesia and currently threatens adjacent rabies-free regions with high densities of free-roaming dogs, including remote northern Australia. Mathematical and simulation disease models are useful tools to provide insights on the most effective control strategies and to inform policy decisions. Existing rabies models typically focus on long-term control programs in endemic countries. However, simulation models describing the dog rabies incursion scenario in regions where rabies is still exotic are lacking. We here describe such a stochastic, spatially explicit rabies simulation model that is based on individual dog information collected in two remote regions in northern Australia. Illustrative simulations produced plausible results with epidemic characteristics expected for rabies outbreaks in disease free regions (mean R0 1.7, epidemic peak 97 days post-incursion, vaccination as the most effective response strategy). Systematic sensitivity analysis identified that model outcomes were most sensitive to seven of the 30 model parameters tested. This model is suitable for exploring rabies spread and control before an incursion in populations of largely free-roaming dogs that live close together with their owners. It can be used for ad-hoc contingency or response planning prior to and shortly after incursion of dog rabies in previously free regions. One challenge that remains is model parameterisation, particularly how dogs' roaming and contacts and biting behaviours change following a rabies incursion in a previously rabies free population.