3 resultados para Stochastic Context-Free L-Grammar
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
This paper proposes a sequential coupling of a Hidden Markov Model (HMM) recognizer for offline handwritten English sentences with a probabilistic bottom-up chart parser using Stochastic Context-Free Grammars (SCFG) extracted from a text corpus. Based on extensive experiments, we conclude that syntax analysis helps to improve recognition rates significantly.
Resumo:
The domain of context-free languages has been extensively explored and there exist numerous techniques for parsing (all or a subset of) context-free languages. Unfortunately, some programming languages are not context-free. Using standard context-free parsing techniques to parse a context-sensitive programming language poses a considerable challenge. Im- plementors of programming language parsers have adopted various techniques, such as hand-written parsers, special lex- ers, or post-processing of an ambiguous parser output to deal with that challenge. In this paper we suggest a simple extension of a top-down parser with contextual information. Contrary to the tradi- tional approach that uses only the input stream as an input to a parsing function, we use a parsing context that provides ac- cess to a stream and possibly to other context-sensitive infor- mation. At a same time we keep the context-free formalism so a grammar definition stays simple without mind-blowing context-sensitive rules. We show that our approach can be used for various purposes such as indent-sensitive parsing, a high-precision island parsing or XML (with arbitrary el- ement names) parsing. We demonstrate our solution with PetitParser, a parsing-expression grammar based, top-down, parser combinator framework written in Smalltalk.