61 resultados para Stimulus intensity

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Diffuse noxious inhibitory control (DNIC) is described as one possible mechanism of acupuncture analgesia. This study investigated the analgesic effect of acupuncture without stimulation compared to nonpenetrating sham acupuncture (NPSA) and cold-pressor-induced DNIC. Forty-five subjects received each of the three interventions in a randomized order. The analgesic effect was measured using pressure algometry at the second toe before and after each of the interventions. Pressure pain detection threshold (PPDT) rose from 299 kPa (SD 112 kPa) to 364 kPa (SD 144), 353 kPa (SD 135), and 467 kPa (SD 168) after acupuncture, NPSA, and DNIC test, respectively. There was no statistically significant difference between acupuncture and NPSA at any time, but a significantly higher increase of PPDT in the DNIC test compared to acupuncture and NPSA. PPDT decreased after the DNIC test, whereas it remained stable after acupuncture and NPSA. Acupuncture needling at low pain stimulus intensity showed a small analgesic effect which did not significantly differ from placebo response and was significantly less than a DNIC-like effect of a painful noninvasive stimulus.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The time-course of dark adaptation provides valuable insights into the function and interactions between the rod and cone pathways in the retina. Here we describe a technique that uses the flash electroretinogram (ERG) response to probe the functional integrity of the cone and rod pathways during the dynamic process of dark adaptation in the mouse. Retinal sensitivity was estimated from the stimulus intensity required to maintain a 30 microV criterion b-wave response during a 40 min period of dark adaptation. When tracked in this manner, dark adaptation functions in WT mice depended upon the bleaching effects of initial background adaptation conditions. Altered dark adaptation functions, commensurate with the functional deficit were recorded in pigmented mice that lacked cone function (Gnat2 ( cplf3 )) and in WT mice injected with a toxin, sodium iodate (NaIO(3)), which targets the retinal pigment epithelium and also has downstream effects on photoreceptors. These data demonstrate that this adaptive tracking procedure measures retinal sensitivity and the contributions of the rod and/or cone pathways during dark adaptation in both WT control and mutant mice.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

OBJECTIVE: Motor evoked potentials (MEPs) after transcranial magnetic brain stimulation (TMS) are smaller than CMAPs after peripheral nerve stimulation, because desynchronization of the TMS-induced motor neurone discharges occurs (i.e. MEP desynchronization). This desynchronization effect can be eliminated by use of the triple stimulation technique (TST; Brain 121 (1998) 437). The objective of this paper is to study the effect of discharge desynchronization on MEPs by comparing the size of MEP and TST responses. METHODS: MEP and TST responses were obtained in 10 healthy subjects during isometric contractions of the abductor digiti minimi, during voluntary background contractions between 0% and 20% of maximal force, and using 3 different stimulus intensities. Additional data from other normals and from multiple sclerosis (MS) patients were obtained from previous studies. RESULTS: MEPs were smaller than TST responses in all subjects and under all stimulating conditions, confirming the marked influence of desynchronization on MEPs. There was a linear relation between the amplitudes of MEPs vs. TST responses, independent of the degree of voluntary contraction and stimulus intensity. The slope of the regression equation was 0.66 on average, indicating that desynchronization reduced the MEP amplitude on average by one third, with marked inter-individual variations. A similar average proportion was found in MS patients. CONCLUSIONS: The MEP size reduction induced by desynchronization is not influenced by the intensity of TMS and by the level of facilitatory voluntary background contractions. It is similar in healthy subjects and in MS patients, in whom increased desynchronization of central conduction was previously suggested to occur. Thus, the MEP size reduction observed may not parallel the actual amount of desynchronization.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

OBJECTIVE: To determine the minimum alveolar concentration (MAC) of isoflurane in Shetland ponies using a sequence of three different supramaximal noxious stimulations at each tested concentration of isoflurane rather than a single stimulation. STUDY DESIGN: Prospective, experimental trial. ANIMALS: Seven 4-year-old, gelding Shetland ponies. METHODS: The MAC of isoflurane was determined for each pony. Three different modes of electrical stimulation were applied consecutively (2 minute intervals): two using constant voltage (90 V) on the gingiva via needle- (CVneedle) or surface-electrodes (CVsurface) and one using constant current (CC; 40 mA) via surface electrodes applied to the skin over the digital nerve. The ability to clearly interpret the responses as positive, the latency of the evoked responses and the inter-electrode resistance were recorded for each stimulus. RESULTS: Individual isoflurane MAC (%) values ranged from 0.60 to 1.17 with a mean (+/-SD) of 0.97 (+/-0.17). The responses were more clearly interpreted with CC, but did not reach statistical significance. The CVsurface mode produced responses with a longer delay. The CVneedle mode was accompanied by variable inter-electrode resistances resulting in uncontrolled stimulus intensity. At 0.9 MAC, the third stimulation induced more positive responses than the first stimulation, independent of the mode of stimulation used. CONCLUSIONS: The MAC of isoflurane in the Shetland ponies was lower than expected with considerable variability among individuals. Constant current surface electrode stimulations were the most repeatable. A summation over the sequence of three supramaximal stimulations was observed around 0.9 MAC. CLINICAL RELEVANCE: The possibility that Shetland ponies require less isoflurane than horses needs further investigation. Constant current surface-electrode stimulations were the most repeatable. Repetitive supramaximal stimuli may have evoked movements at isoflurane concentrations that provide immobility when single supramaximal stimulation was applied.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study aimed to characterize the nociceptive withdrawal reflex (NWR) and to define the nociceptive threshold in 25 healthy, non-medicated experimental sheep in standing posture. Electrical stimulation of the dorsal lateral digital nerves of the right thoracic and the pelvic limb was performed and surface-electromyography (EMG) from the deltoid (all animals) and the femoral biceps (18 animals) or the peroneus tertius muscles (7 animals) was recorded. The behavioural reaction following each stimulation was scored on a scale from 0 (no reaction) to 5 (strong whole body reaction). A train-of-five 1 ms constant-current pulse was used and current intensity was stepwise increased until NWR threshold intensity was reached. The NWR threshold intensity (It) was defined as the minimal stimulus intensity able to evoke a reflex with a minimal Root-Mean-Square amplitude (RMSA) of 20 μV, a minimal duration of 10 ms and a minimal reaction score of 1 (slight muscle contraction of the stimulated limb) within the time window of 20 to 130 ms post-stimulation. Based on this value, further stimulations were performed below (0.9It) and above threshold (1.5It and 2It). The stimulus-response curve was described. Data are reported as medians and interquartile ranges. At the deltoid muscle It was 4.4 mA (2.9–5.7) with an RMSA of 62 μV (30–102). At the biceps femoris muscle It was 7.0 mA (4.0–10.0) with an RMSA of 43 μV (34–50) and at the peroneus tertius muscle It was 3.4 mA (3.1–4.4) with an RMSA of 38 μV (32–46). Above threshold, RMSA was significantly increased at all muscles. Below threshold, RMSA was only significantly smaller than at It for the peroneus tertius muscle but not for the other muscles.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The nociceptive withdrawal reflex (NWR) model is used in animal pain research to quantify nociception. The aim of this study was to evaluate the NWR evoked by repeated stimulations in healthy, non-medicated standing sheep. Repeated electrical stimulations were applied at 5Hz for 2s to the digital nerves of the right thoracic and the pelvic limbs of 25 standing sheep. The stimulation intensities applied were fractions (0.5, 0.6, 0.7, 0.8, 0.9 and 1) of the individual previously determined nociceptive threshold (It) after single stimulation. Surface-electromyographic activity (EMG) was recorded from the deltoid, the femoral biceps or the peroneus tertius muscles. The repeated stimulation threshold (RS It) was reached if at least one stimulus in the train was followed by a reflex with a minimal root-mean-square-amplitude (RMSA) of 20μV. The behavioural reaction following each series of stimulations was scored on a scale from 0 (no reaction) to 5 (vigorous whole-body reaction). For the deltoid muscle, RS It was 2.3mA (1.6-3mA) with a reaction score of 2 (1-2) and at a fraction of 0.6 (0.5-0.8)×It. For the biceps femoris muscle, RS It was 2.9mA (2.6-4mA) with a reaction score of 1 (1-2) at a fraction of and 0.55 (0.4-0.7)×It while for the peroneus tertius muscle RS It was 3mA (2.8-3.5mA) with a reaction score of 1 (1-2) and at a fraction of 0.8 (0.8-0.95)×It. Both, RMSA and reaction scores increased significantly with increasing stimulation intensities in all muscles (p<0.001). The repeated application of electrical stimuli led to temporal summation of nociceptive inputs and therefore a reduction of the stimulus intensity evoking a withdrawal reaction in healthy, standing sheep. Data achieved in this study can now serve as reference for further clinical or experimental applications of the model in this species.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

HYPOTHESIS A multielectrode probe in combination with an optimized stimulation protocol could provide sufficient sensitivity and specificity to act as an effective safety mechanism for preservation of the facial nerve in case of an unsafe drill distance during image-guided cochlear implantation. BACKGROUND A minimally invasive cochlear implantation is enabled by image-guided and robotic-assisted drilling of an access tunnel to the middle ear cavity. The approach requires the drill to pass at distances below 1 mm from the facial nerve and thus safety mechanisms for protecting this critical structure are required. Neuromonitoring is currently used to determine facial nerve proximity in mastoidectomy but lacks sensitivity and specificity necessaries to effectively distinguish the close distance ranges experienced in the minimally invasive approach, possibly because of current shunting of uninsulated stimulating drilling tools in the drill tunnel and because of nonoptimized stimulation parameters. To this end, we propose an advanced neuromonitoring approach using varying levels of stimulation parameters together with an integrated bipolar and monopolar stimulating probe. MATERIALS AND METHODS An in vivo study (sheep model) was conducted in which measurements at specifically planned and navigated lateral distances from the facial nerve were performed to determine if specific sets of stimulation parameters in combination with the proposed neuromonitoring system could reliably detect an imminent collision with the facial nerve. For the accurate positioning of the neuromonitoring probe, a dedicated robotic system for image-guided cochlear implantation was used and drilling accuracy was corrected on postoperative microcomputed tomographic images. RESULTS From 29 trajectories analyzed in five different subjects, a correlation between stimulus threshold and drill-to-facial nerve distance was found in trajectories colliding with the facial nerve (distance <0.1 mm). The shortest pulse duration that provided the highest linear correlation between stimulation intensity and drill-to-facial nerve distance was 250 μs. Only at low stimulus intensity values (≤0.3 mA) and with the bipolar configurations of the probe did the neuromonitoring system enable sufficient lateral specificity (>95%) at distances to the facial nerve below 0.5 mm. However, reduction in stimulus threshold to 0.3 mA or lower resulted in a decrease of facial nerve distance detection range below 0.1 mm (>95% sensitivity). Subsequent histopathology follow-up of three representative cases where the neuromonitoring system could reliably detect a collision with the facial nerve (distance <0.1 mm) revealed either mild or inexistent damage to the nerve fascicles. CONCLUSION Our findings suggest that although no general correlation between facial nerve distance and stimulation threshold existed, possibly because of variances in patient-specific anatomy, correlations at very close distances to the facial nerve and high levels of specificity would enable a binary response warning system to be developed using the proposed probe at low stimulation currents.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE To evaluate the origin and degree of activity of nitric oxide (NO) and matrix metalloproteinase (MMP) in explants of cranial cruciate ligaments (CCLs) obtained from dogs and cultured with and without inflammatory activators. SAMPLE POPULATION Tissue specimens obtained from 7 healthy adult Beagles that were (mean +/- SD) 4.5 +/- 0.5 years old and weighed 12.5 +/- 0.8 kg. PROCEDURE The CCLs were harvested immediately after dogs were euthanatized, and specimens were submitted for explant culture. Cultures were stimulated by incubation with a combination of interleukin-1, tumor necrosis factor-alpha, and lipopolysaccharide, or they were not stimulated. Culture supernatants were examined for production of NO nitrite-nitrate metabolites (NOts) and activity of MMP Cultured specimens were evaluated by use of immunohistochemical analysis to detect activity of inducible NO synthase (iNOS). RESULTS All ligament explants produced measurable amounts of NOts. Stimulated cultures produced significantly more NOts after incubation for 24 and 48 hours, compared with nonstimulated cultures. Production of MMP in supernatants after incubation for 48 hours was significantly higher in stimulated cultures than in nonstimulated cultures. Cells with positive staining for iNOS were detected on all slides. Positively stained cells were predominantly chondroid metaplastic. There was a significant difference in intensity of cell staining between stimulated and non-stimulated cultures. CONCLUSIONS AND CLINICAL RELEVANCE Explant cultures of intact CCLs obtained from dogs produce iNOS-induced NO. Stimulation of chondroid metaplastic cells in CCL of dogs by use of inflammatory activators can increase production of iNOS, NOts, and MMP.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a case of a Rendu-Osler-Weber disease patient with recurrent life threatening epistaxis demanding multiple blood transfusions despite of repetitive endoscopic laser and electrocoagulations, endovascular embolisation, septodermoplasty, and long-term intranasal dressings. As alternative treatment modalities repeatedly failed and the patient became almost permanently dependent on nasal dressing, we performed a highly conformal intensity-modulated radiotherapy of the nasal cavity; a total dose of 50 Gy in 2 Gy single fractions was applied. The therapy was very well tolerated, no acute toxicities occurred. Two weeks after the last radiation dose had been applied, the nasal dressing could be removed without problems. Endoscopical control revealed an almost avascular white mucosa without any trace of bleeding spots; previously existing hemangiomas and crusts had disappeared. After a 1-year-follow up, the patient had no significant recurrent epistaxis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

to report acute and late toxicity in prostate cancer patients treated by high-dose intensity-modulated radiation therapy (IMRT) with daily image-guidance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To describe biochemical relapse-free survival (BRFS) and late toxicity after combined high-dose rate brachytherapy (HDR-B) and intensity-modulated radiation therapy (IMRT) in intermediate- and high-risk prostate cancer patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study was to evaluate the treatment dosimetry, efficacy and toxicity of intensity modulated radiation therapy (IMRT) and fractionated stereotactic radiotherapy (FSRT) in the management of infratentorial ependymoma. Between 1999 and 2007, seven children (median age, 3.1 years) with infratentorial ependymoma were planned with either IMRT (3 patients) or SFRT (4 patients), the latter after conventional posterior fossa irradiation. Two children underwent gross total resection. Median prescribed dose was 59.4 Gy (range, 55.8-60). The median follow-up for surviving patients was 4.8 years (range, 1.3-8). IMRT (median dose, 59.4 Gy) and FSRT (median dose, 55.8 Gy) achieved similar optimal target coverage. Percentages of maximum doses delivered to the cochleae (59.5 vs 85.0% Gy; P = 0.05) were significantly inferior with IMRT, when compared to FSRT planning. Percentages of maximum doses administered to the pituitary gland (38.2 vs 20.1%; P = 0.05) and optic chiasm (38.1 vs 14.1%; P = 0.001) were, however, significantly higher with IMRT, when compared to FSRT planning. No recurrences were observed at the last follow-up. The estimated 3-year progression-free survival and overall survival were 87.5 and 100%, respectively. No grade >1 acute toxicity was observed. Two patients presented late adverse events (grade 2 hypoacousia) during follow-up, without cognitive impairment. IMRT or FSRT for infratentorial ependymomas is effective and associated with a tolerable toxicity level. Both treatment techniques were able to capitalize their intrinsic conformal ability to deliver high-dose radiation. Larger series of patients treated with these two modalities will be necessary to more fully evaluate these delivery techniques.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The experiment investigated the impact of sleep restriction on pain perception and related evoked potential correlates (laser-evoked potentials, LEPs). Ten healthy subjects with good sleep quality were investigated in the morning twice, once after habitual sleep and once after partial sleep restriction. Additionally, we studied the impact of attentional focussing on pain and LEPs by directing attention to (intensity discrimination) or away from the stimulus (mental arithmetic). Laser stimuli directed to the hand dorsum were rated as 30% more painful after sleep restriction (49+/-7 mm) than after a night of habitual sleep (38+/-7 mm). A significant interaction between attentional focus and sleep condition suggested that attentional focusing was less distinctive under sleep restriction. Intensity discrimination was preserved. In contrast, the amplitude of the early parasylvian N1 of LEPs was significantly smaller after a night of partial sleep restriction (-36%, p<0.05). Likewise, the amplitude of the vertex N2-P2 was significantly reduced (-34%, p<0.01); also attentional modulation of the N2-P2 was reduced. Thus, objective (LEPs) and subjective (pain ratings) parameters of nociceptive processing were differentially modulated by partial sleep restriction. We propose, that sleep reduction leads to an impairment of activation in the ascending pathway (leading to reduced LEPs). In contradistinction, pain perception was boosted, which we attribute to lack of pain control distinct from classical descending inhibition, and thus not affecting the projection pathway. Sleep-restricted subjects exhibit reduced attentional modulation of pain stimuli and may thus have difficulties to readily attend to or disengage from pain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this study was to evaluate the anti-nociceptive activity of ketamine and isoflurane in horses using a limb withdrawal reflex (WR) model. Single and repeated stimulations were applied to the digital nerve of the left forelimb in ponies anaesthetised with isoflurane before, during and after intravenous administration of racemic ketamine. Surface electromyographic activity was recorded from the deltoid muscle. Higher stimulation intensity was required to evoke a reflex during ketamine administration. Furthermore, the amplitudes of response to stimulations were significantly and dose-dependently depressed and a flattening of the stimulus-response curves was observed. The reflex activity recovered partially once the ketamine infusion finished. The results demonstrated that the limb WR can be used to quantify the temporal effect of ketamine on the sensory-motor processing in ponies anaesthetised with isoflurane.