64 resultados para Stimulating factor-i
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Growth hormone insensitivity syndrome (GHIS) is a rare cause of growth retardation characterized by high serum GH levels, and low serum insulin-like growth factor I (IGF-I) levels associated with a genetic defect of the GH receptor (GHR) as well post-GHR signaling pathway. Based on clinical, as well as biochemical characteristics, GHIS can be genetically classified as classical/Laron's syndrome and nonclassical/atypical GHIS. Recombinant human IGF-I (rhIGF-I) treatment is effective in promoting growth in subjects who have GHIS. Further, pharmacological studies of a IGF-I compound containing a 1:1 molar complex of rhIGF-I and rhIGF-binding protein-3 (BP-3) demonstrated that the complex was effective in increasing levels of circulating total and free IGF-I and that the administration in patients with GHIS should be safe, well-tolerated and more effective than rhIGF-I on its own.
Resumo:
Context: Through overexpression and aberrant activation in many human tumors, the IGF system plays a key role in tumor development and tumor cell proliferation. Different strategies targeting IGF-I receptor (IGFI-R) have been developed, and recent studies demonstrated that combined treatments with cytostatic drugs enhance the potency of anti-IGFI-R therapies. Objective: The objective of the study was to examine the IGFI-R expression status in neuroendocrine tumors of the gastroenteropancreatic system (GEP-NETs) in comparison with healthy tissues and use potential overexpression as a target for novel anti-IGFI-R immunoliposomes. Experimental Design: A human tumor tissue array and samples from different normal tissues were investigated by immunohistochemistry. An IGFI-R antagonistic antibody (1H7) was coupled to the surface of sterically stabilized liposomes loaded with doxorubicin. Cell lines from different tumor entities were investigated for liposomal association studies in vitro. For in vivo experiments, neuroendocrine tumor xenografts were used for evaluation of pharmacokinetic and therapeutic properties of the novel compound. Results: Immunohistochemistry revealed significant IGFI-R overexpression in all investigated GEP-NETs (n = 59; staining index, 229.1 +/- 3.1%) in comparison with normal tissues (115.7 +/- 3.7%). Furthermore, anti-IGFI-R immunoliposomes displayed specific tumor cell association (44.2 +/- 1.6% vs. IgG liposomes, 0.8 +/- 0.3%; P < 0.0001) and internalization in human neuroendocrine tumor cells in vitro and superior antitumor efficacy in vivo (life span 31.5 +/- 2.2 d vs. untreated control, 19 +/- 0.6, P = 0.008). Conclusion: IGFI-R overexpression seems to be a common characteristic of otherwise heterogenous NETs. Novel anti-IGFI-R immunoliposomes have been developed and successfully tested in a preclinical model for human GEP-NETs. Moreover in vitro experiments indicate that usage of this agent could also present a promising approach for other tumor entities.
Resumo:
Chemotherapy-induced neutropenia is a major risk factor for infection-related morbidity and mortality and also a significant dose-limiting toxicity in cancer treatment. Patients developing severe (grade 3/4) or febrile neutropenia (FN) during chemotherapy frequently receive dose reductions and/or delays to their chemotherapy. This may impact the success of treatment, particularly when treatment intent is either curative or to prolong survival. In Europe, prophylactic treatment with granulocyte-colony stimulating factors (G-CSFs), such as filgrastim (including approved biosimilars), lenograstim or pegfilgrastim is available to reduce the risk of chemotherapy-induced neutropenia. However, the use of G-CSF prophylactic treatment varies widely in clinical practice, both in the timing of therapy and in the patients to whom it is offered. The need for generally applicable, European-focused guidelines led to the formation of a European Guidelines Working Party by the European Organisation for Research and Treatment of Cancer (EORTC) and the publication in 2006 of guidelines for the use of G-CSF in adult cancer patients at risk of chemotherapy-induced FN. A new systematic literature review has been undertaken to ensure that recommendations are current and provide guidance on clinical practice in Europe. We recommend that patient-related adverse risk factors, such as elderly age (≥65 years) and neutrophil count be evaluated in the overall assessment of FN risk before administering each cycle of chemotherapy. It is important that after a previous episode of FN, patients receive prophylactic administration of G-CSF in subsequent cycles. We provide an expanded list of common chemotherapy regimens considered to have a high (≥20%) or intermediate (10-20%) risk of FN. Prophylactic G-CSF continues to be recommended in patients receiving a chemotherapy regimen with high risk of FN. When using a chemotherapy regimen associated with FN in 10-20% of patients, particular attention should be given to patient-related risk factors that may increase the overall risk of FN. In situations where dose-dense or dose-intense chemotherapy strategies have survival benefits, prophylactic G-CSF support is recommended. Similarly, if reductions in chemotherapy dose intensity or density are known to be associated with a poor prognosis, primary G-CSF prophylaxis may be used to maintain chemotherapy. Clinical evidence shows that filgrastim, lenograstim and pegfilgrastim have clinical efficacy and we recommend the use of any of these agents to prevent FN and FN-related complications where indicated. Filgrastim biosimilars are also approved for use in Europe. While other forms of G-CSF, including biosimilars, are administered by a course of daily injections, pegfilgrastim allows once-per-cycle administration. Choice of formulation remains a matter for individual clinical judgement. Evidence from multiple low level studies derived from audit data and clinical practice suggests that some patients receive suboptimal daily G-CSFs; the use of pegfilgrastim may avoid this problem.
Resumo:
The clinical value of chemotherapy sensitization of acute myeloid leukemia (AML) with G-CSF priming has remained controversial. Cytarabine is a key constituent of remission induction chemotherapy. The effect of G-CSF priming has not been investigated in relationship with variable dose levels of cytarabine. We randomized 917 AML patients to receive G-CSF (456 patients) or no G-CSF (461 patients) at the days of chemotherapy. In the initial part of the study, 406 patients were also randomized between 2 cytarabine regimens comparing conventional-dose (199 patients) versus escalated-dose (207 patients) cytarabine in cycles 1 and 2. We found that patients after induction chemotherapy plus G-CSF had similar overall survival (43% vs 40%, P = .88), event-free survival (37% vs 31%, P = .29), and relapse rates (34% vs 36%, P = .77) at 5 years as those not receiving G-CSF. However, patients treated with the escalated-dose cytarabine regimen benefited from G-CSF priming, with improved event-free survival (P = .01) and overall survival (P = .003), compared with patients without G-CSF undergoing escalated-dose cytarabine treatment. A significant survival advantage of sensitizing AML for chemotherapy with G-CSF was not apparent in the entire study group, but it was seen in patients treated with escalated-dose cytarabine during remission induction. The HOVON-42 study is registered under The Netherlands Trial Registry (www.trialregister.nl) as #NTR230.
Resumo:
Context: IGF-I plays a central role in metabolism and growth regulation. High IGF-I levels are associated with increased cancer risk and low IGF-I levels with increased risk for cardiovascular disease. Objective: Our objective was to determine the relationship between circulating IGF-I levels and mortality in the general population using random-effects meta-analysis and dose-response metaregression. Data Sources: We searched PubMed, EMBASE, Web of Science, and Cochrane Library from 1985 to September 2010 to identify relevant studies. Study Selection: Population-based cohort studies and (nested) case-control studies reporting on the relation between circulating IGF-I and mortality were assessed for eligibility. Data Extraction: Data extraction was performed by two investigators independently, using a standardized data extraction sheet. Data Synthesis: Twelve studies, with 14,906 participants, were included. Overall, risk of bias was limited. Mortality in subjects with low or high IGF-I levels was compared with mid-centile reference categories. All-cause mortality was increased in subjects with low as well as high IGF-I, with a hazard ratio (HR) of 1.27 (95% CI = 1.08–1.49) and HR of 1.18 (95% CI = 1.04–1.34), respectively. Dose-response metaregression showed a U-shaped relation of IGF-I and all-cause mortality (P = 0.003). The predicted HR for the increase in mortality comparing the 10th IGF-I with the 50th percentile was 1.56 (95% CI = 1.31–1.86); the predicted HR comparing the 90th with the 50th percentile was 1.29 (95% CI = 1.06–1.58). A U-shaped relationship was present for both cancer mortality and cardiovascular mortality. Conclusions: Both low and high IGF-I concentrations are associated with increased mortality in the general population.
Resumo:
A number of mathematical models for predicting growth and final height outcome have been proposed to enable the clinician to 'individualize' growth-promoting treatment. However, despite optimizing these models, many patients with isolated growth hormone deficiency (IGHD) do not reach their target height. The aim of this study was to analyse the impact of polymorphic genotypes [CA repeat promoter polymorphism of insulin-like growth factor-I (IGF-I) and the -202 A/C promoter polymorphism of IGF-Binding Protein-3 (IGFBP-3)] on variable growth factors as well as final height in severe IGHD following GH treatment. DESIGN, PATIENTS AND CONTROLS: One hundred seventy eight (IGF-I) and 167 (IGFBP-3) subjects with severe growth retardation because of IGHD were studied. In addition, the various genotypes were also studied in a healthy control group of 211 subjects.
Resumo:
Infection with the Gram-negative pathogen Prevotella intermedia gives rise to periodontitis and a growing number of studies implies an association of P. intermedia with rheumatoid arthritis. The serine protease Factor I (FI) is the central inhibitor of complement degrading complement components C3b and C4b in the presence of cofactors such as C4b-binding protein (C4BP) and Factor H (FH). Yet, the significance of complement inhibitor acquisition in P. intermedia infection and FI binding by Gram-negative pathogens has not been addressed. Here we show that P. intermedia isolates bound purified FI as well as FI directly from heat-inactivated human serum. FI bound to bacteria retained its serine protease activity as shown in degradation experiments with (125)I-labeled C4b. Since FI requires cofactors for its activity we also investigated the binding of purified cofactors C4BP and FH and found acquisition of both proteins, which retained their activity in FI mediated degradation of C3b and C4b. We propose that FI binding by P. intermedia represents a new mechanism contributing to complement evasion by a Gram-negative bacterial pathogen associated with chronic diseases.
Resumo:
Many metabolic hormones, growth hormone (GH), insulin-like growth factor-I (IGF-I) and insulin affect ovarian functions. However, whether ovarian steroid hormones affect metabolic hormones in cattle remains unknown. This study aimed to determine the effect of sex steroids on the plasma profiles of GH, IGF-I and insulin and their receptors in the liver and adipose tissues of dairy cows. Ovariectomized cows (n = 14) were randomly divided into four groups: control group (n = 3) was treated with saline on Day 0; oestradiol (E2) group (n = 3), with saline and 1 mg oestradiol benzoate (EB) on Day 0 and 5, respectively; progesterone (P4) group (n = 4) with two CIDRs (Pfizer Inc., Tokyo, Japan) from Day 0; and E2 + P4 group (n = 4) with two CIDRs on Day 0 that were removed on Day 6 and were immediately injected with 1 mg EB. The animals were euthanized after the experiment, and liver and adipose tissues samples were quantitatively analysed using real-time PCR for the expression of mRNA for the GH (GHR), IGF-I (IGFR-I) and insulin (IR) receptor mRNAs. Oestradiol benzoate significantly increased the number of peaks (p < 0.05), pulse amplitude (p < 0.05) and area under the curve (AUC; p < 0.01) for plasma GH; moreover, it increased plasma IGF-I concentration (p < 0.05), but it had no effect on the plasma insulin profile. P4 significantly decreased the AUC (p < 0.01), compared with the control group, whereas it did not affect the number of peaks and the amplitude of GH pulses. P4 + E2 did not affect the GH pulse profile. E2 increased the mRNA expression of GHR, IGFR-I and IR in the liver (p < 0.05), whereas both P4 and E2 + P4 did not change their expressions. Our results provide evidence that the metabolic and reproductive endocrine axes may regulate each other to ensure optimal reproductive and metabolic function.
Resumo:
OBJECTIVE To investigate the effects of interleukin-17A (IL-17A) on osteoclastogenesis in vitro. METHODS Bone marrow cells (BMCs) were isolated from the excised tibia and femora of wild-type C57BL/6J mice, and osteoblasts were obtained by sequential digestion of the calvariae of ddY, C57BL/6J, and granulocyte-macrophage colony-stimulating factor-knockout (GM-CSF(-/-)) mice. Monocultures of BMCs or cocultures of BMCs and osteoblasts were supplemented with or without 1,25-dihydroxyvitamin D(3)(1,25[OH](2)D(3)), recombinant human macrophage colony-stimulating factor (M-CSF), RANKL, and IL-17A. After 5-6 days, the cultures were fixed with 4% paraformaldehyde and subsequently stained for the osteoclast marker enzyme tartrate-resistant acid phosphatase (TRAP). Osteoprotegerin (OPG) and GM-CSF expression were measured by enzyme-linked immunosorbent assay, and transcripts for RANK and RANKL were detected by real-time polymerase chain reaction. RESULTS In both culture systems, IL-17A alone did not affect the development of osteoclasts. However, the addition of IL-17A plus 1,25(OH)(2)D(3) to cocultures inhibited early osteoclast development within the first 3 days of culture and induced release of GM-CSF into the culture supernatants. Furthermore, in cocultures of GM-CSF(-/-) mouse osteoblasts and wild-type mouse BMCs, IL-17A did not affect osteoclast development, corroborating the role of GM-CSF as the mediator of the observed inhibition of osteoclastogenesis by IL-17A. CONCLUSION These findings suggest that IL-17A interferes with the differentiation of osteoclast precursors by inducing the release of GM-CSF from osteoblasts.
Resumo:
Experimental partial hepatectomy of more than 80% of the liver weight bears an increased mortality in rodents, due to impaired hepatic regeneration in small-for-size liver remnants. Granulocyte colony-stimulating factor (G-CSF) promotes progenitor cell expansion and mobilization and also has immunomodulatory properties. The aim of this study was to determine the effect of systemically administered G-CSF on liver regeneration and animal survival in a small-for-size liver remnant mouse model. Mice were preconditioned daily for 5 days with subcutaneous injections of 5 microg G-CSF or aqua ad injectabile. Subsequently, 83% partial hepatectomy was performed by resecting the median, the left, the caudate, and the right inferior hepatic lobes in all animals. Daily sham or G-CSF injection was continued. Survival was significantly better in G-CSF-treated animals (P < 0.0001). At 36 and 48 h after microsurgical hepatic resection, markers of hepatic proliferation (Ki67, BrdU) were elevated in G-CSF-treated mice compared to sham injected control animals (P < 0.0001) and dry liver weight was increased (P < 0.05). G-CSF conditioning might prove to be useful in patients with small-for-size liver remnants after extended hepatic resections due to primary or secondary liver tumors or in the setting of split liver transplantation.
Resumo:
ntense liver regeneration and almost 100% survival follows partial hepatectomy of up to 70% of liver mass in rodents. More extensive resections of 70 to 80% have an increased mortality and partial hepatectomies of >80% constantly lead to acute hepatic failure and death in mice. The aim of the study was to determine the effect of systemically administered granulocyte colony stimulating factor (G-CSF) on animal survival and liver regeneration in a small for size liver remnant mouse model after 83% partial hepatectomy (liver weight <0.8% of mouse body weight). Methods: Male Balb C mice (n=80, 20-24g) were preconditioned daily for five days with 5μg G-CSF subcutaneously or sham injected (aqua ad inj). Subsequently 83% hepatic resection was performed and daily sham or G-CSF injection continued. Survival was determined in both groups (G-CSF n=35; Sham: n=33). In a second series BrdU was injected (50mg/kg Body weight) two hours prior to tissue harvest and animals euthanized 36 and 48 hours after 83% liver resection (n=3 each group). To measure hepatic regeneration the BrdU labeling index and Ki67 expression were determined by immunohistochemistry by two independent observers. Harvested liver tissue was dried to constant weight at 65 deg C for 48 hours. Results: Survival was 0% in the sham group on day 3 postoperatively and significantly better (26.2% on day 7 and thereafter) in the G-CSF group (Log rank test: p<0.0001). Dry liver weight was increased in the G-CSF group (T-test: p<0.05) 36 hours after 83% partial hepatectomy. Ki67 expression was elevated in the G-CSF group at 36 hours (2.8±2.6% (Standard deviation) vs 0.03±0.2%; Rank sum test: p<0.0001) and at 48 hours (45.1±34.6% vs 0.7±1.0%; Rank sum test: p<0.0001) after 83% liver resection. BrdU labeling at 48 hours was 0.1±0.3% in the sham and 35.2±34.2% in the G-CSF group (Rank sum test: p<0.0001) Conclusions: The surgical 83% resection mouse model is suitable to test hepatic supportive regimens in the setting of small for size liver remnants. Administration of G-CSF supports hepatic regeneration after microsurgical 83% partial hepatectomy and leads to improved long-term survival in the mouse. G-CSF might prove to be a clinically valuable supportive substance in small for size liver remnants in humans after major hepatic resections due to primary or secondary liver tumors or in the setting of living related liver donation.
Resumo:
Conditioning with granulocyte colony-stimulating factor (G-CSF) promotes liver regeneration in an experimental small-for-size liver remnant mouse model. The mechanisms involved in this extraordinary G-CSF effect are unknown. The aim of this study was to investigate the influence of G-CSF on the hepatic microvasculature in the regenerating liver. The hepatic sinusoidal microvasculature and microarchitecture of the regenerating liver were evaluated by intravital microscopy in mice. Three experimental groups were compared: (1) unoperated unconditioned animals (control; n = 5), (2) animals conditioned with G-CSF 48 h after 60% partial hepatectomy (G-CSF-PH; n = 6), and (3) animals sham conditioned 48 h after 60% PH (sham-PH; n = 6). PH led to hepatocyte hypertrophy and increased hepatic sinusoidal velocity in the sham-PH and G-CSF-PH groups. Increased sinusoidal diameter and increased hepatic blood flow were observed in the G-CSF-PH group compared to the sham-PH and control groups. Furthermore, there was a strong positive correlation between spleen weight and hepatic sinusoidal diameter in the G-CSF-PH group. The increased hepatic blood flow could explain the observed benefit of G-CSF conditioning during liver regeneration. These results elucidate an unexplored aspect of pharmacological modulation of liver regeneration and motivate further experiments.
Resumo:
BACKGROUND: Patients taking immunosuppressants after transplantation may require intestinal surgery. Mycophenolate mofetil (MMF) has been found to impair the healing of colonic anastomoses in rats. This study examined whether insulin-like growth factor (IGF) I prevents MMF impairment of anastomotic healing. METHODS: Sixty-three rats were divided into three groups (MMF, MMF/IGF and control). Animals underwent a sigmoid colon anastomosis with a 6/0 suture, and were killed on days 2, 4 and 6 after surgery. Investigations included bursting pressure measurement, morphometric analysis, and assessment of mucosal proliferation by 5-bromo-2'-deoxyuridine and Ki67 immunohistochemistry of the anastomoses. RESULTS: The leak rate was three of 21, one of 20 and two of 20 in the MMF, MMF/IGF-I and control groups respectively. Anastomotic bursting pressures were significantly lower in the MMF group than in the control group on days 2 and 4, but there was no significant difference by day 6. Values in the MMF/IGF-I and control groups were similar. Colonic crypt depth was significantly reduced in MMF-treated animals on days 2 and 4, but this impairment was attenuated by IGF-I on day 4. Similarly, IGF-I reduced the negative impact of MMF on mucosal proliferation on days 2 and 6. CONCLUSION: Exogenous IGF-I improves some aspects of MMF-impaired anastomotic healing.