13 resultados para Stimulates Growth

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is increasingly recognised that chronically activated glia contribute to the pathology of various neurodegenerative diseases, including glaucoma. One means by which this can occur is through the release of neurotoxic, proinflammatory factors. In the current study, we therefore investigated the spatio-temporal patterns of expression of three such cytokines, IL-1β, TNFα and IL-6, in a validated rat model of experimental glaucoma. First, only weak evidence was found for increased expression of IL-1β and TNFα following induction of ocular hypertension. Second, and much more striking, was that robust evidence was uncovered showing IL-6 to be synthesised by injured retinal ganglion cells following elevation of intraocular pressure and transported in an orthograde fashion along the nerve, accumulating at sites of axonal disruption in the optic nerve head. Verification that IL-6 represents a novel marker of disrupted axonal transport in this model was obtained by performing double labelling immunofluorescence with recognised markers of fast axonal transport. The stimulus for IL-6 synthesis and axonal transport during experimental glaucoma arose from axonal injury rather than ocular hypertension, as the response was identical after optic nerve crush and bilateral occlusion of the carotid arteries, each of which is independent of elevated intraocular pressure. Moreover, the response of IL-6 was not a generalised feature of the gp130 family of cytokines, as it was not mimicked by another family member, ciliary neurotrophic factor. Finally, further study suggested that IL-6 may be an early part of the endogenous regenerative response as the cytokine colocalised with growth-associated membrane phosphoprotein-43 in some putative regenerating axons, and potently stimulated neuritogenesis in retinal ganglion cells in culture, an effect that was additive to that of ciliary neurotrophic factor. These data comprise clear evidence that IL-6 is actively involved in the attempt of injured retinal ganglion cells to regenerate their axons.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In Echinococcus multilocularis metacestodes, the surface-associated and highly glycosylated laminated layer, and molecules associated with this structure, is believed to be involved in modulating the host-parasite interface. We report on the molecular and functional characterisation of E. multilocularis phosphoglucose isomerase (EmPGI), which is a component of this laminated layer. The EmPGI amino acid sequence is virtually identical to that of its homologue in Echinococcus granulosus, and shares 64% identity and 86% similarity with human PGI. Mammalian PGI is a multi-functional protein which, besides its glycolytic function, can also act as a cytokine, growth factor and inducer of angiogenesis, and plays a role in tumour growth, development and metastasis formation. Recombinant EmPGI (recEmPGI) is also functionally active as a glycolytic enzyme and was found to be present, besides the laminated layer, in vesicle fluid and in germinal layer cell extracts. EmPGI is released from metacestodes and induces a humoral immune response in experimentally infected mice, and vaccination of mice with recEmPGI renders these mice more resistant towards secondary challenge infection, indicating that EmPGI plays an important role in parasite development and/or in modulating the host-parasite relationship. We show that recEmPGI stimulates the growth of isolated E. multilocularis germinal layer cells in vitro and selectively stimulates the proliferation of bovine adrenal cortex endothelial cells but not of human fibroblasts and rat hepatocytes. Thus, besides its role in glycolysis, EmPGI could also act as a factor that stimulates parasite growth and potentially induces the formation of novel blood vessels around the developing metacestode in vivo.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction: Prolyl hydroxylase (PHD) inhibitors can induce a proangiogenic response that stimulates regeneration in soft and hard tissues. However, the effect of PHD inhibitors on the dental pulp is unclear. The purpose of this study was to evaluate the effects of PHD inhibitors on the proangiogenic capacity of human dental pulp–derived cells. Methods: To test the response of dental pulp–derived cells to PHD inhibitors, the cells were exposed to dimethyloxalylglycine, desferrioxamine, L-mimosine, and cobalt chloride. To assess the response of dental pulp cells to a capping material supplemented with PHD inhibitors, the cells were treated with supernatants from calcium hydroxide. Viability, proliferation, and protein synthesis were assessed by formazan formation, 3[H]thymidine, and 3[H]leucine incorporation assays. The effect on the proangiogenic capacity was measured by immunoassays for vascular endothelial growth factor (VEGF). Results: We found that all 4 PHD inhibitors can reduce viability, proliferation, and protein synthesis at high concentrations. At nontoxic concentrations and in the presence of supernatants from calcium hydroxide, PHD inhibitors stimulated the production of VEGF in dental pulp–derived cells. When calcium hydroxide was supplemented with the PHD inhibitors, the supernatants from these preparations did not significantly elevate VEGF levels. Conclusions: These results show that PHD inhibitors can stimulate VEGF production of dental pulp–derived cells, suggesting a corresponding increase in their proangiogenic capacity. Further studies will be required to understand the impact that this might have on pulp regeneration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study the regulation of GH-receptor gene (GHR/GHBP) transcription by different concentrations of GH (0, 12.5, 25, 50, 150, 500 ng/ml) with and without variable TSH concentrations (0.5, 2, 20 mU/l) in primary human thyroid cells cultured in serum-free hormonally-defined medium was studied. The incubation time was 6 h and GHR/GHBP mRNA expression was quantitatively assessed by using PCR amplification at hourly intervals. Correlating with the GH-concentrations added a constant and significant increase of GHR/GHBP gene transcription was found. After the addition of 12.5 ng/ml GH, GHR/GHBP mRNA concentration remained constant over the incubation period of 6 h but in comparison with the experiments where no GH was added there was a significant change of GHR/GHBP mRNA expression. Following the addition of 25 ng/ml GH a slight but further increase of GHR/GHBP transcription products was seen which increased even more in the experiments where higher GH concentrations were used. These data focusing on GHR/GHBP gene transcription derived from cDNA synthesis and quantitative PCR amplification were confirmed by run-on experiments. Furthermore, cycloheximide did not affect these changes supporting the notion that GH stimulates GHR/GHBP gene transcription directly. In a second set of experiments, in combination with variable TSH levels, identical GH concentrations were used and no difference in either GHR/GHBP mRNA levels or in transcription rate (run-on experiments) could be found. In conclusion, we report data showing that primary thyroid cells express functional GH-receptors in which GH has a direct and dose dependent effect on the GHR/GHBP gene transcription. Furthermore, TSH does not a have a major impact on GHR/GHBP gene regulation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sphingosine kinases (SK) catalyze the production of sphingosine-1-phosphate which in turn regulates cell responses such as proliferation and migration. Here, we show that exposure of the human endothelial cell line EA.hy 926 to hypoxia stimulates a increased SK-1, but not SK-2, mRNA, protein expression, and activity. This effect was due to stimulated SK-1 promoter activity which contains two putative hypoxia-inducible factor-responsive-elements (HRE). By deletion of one of the two HREs, hypoxia-induced promoter activation was abrogated. Furthermore, hypoxia upregulated the expression of HIF-1alpha and HIF-2alpha, and both contributed to SK-1 gene transcription as shown by selective depletion of HIF-1alpha or HIF-2alpha by siRNA. The hypoxia-stimulated SK-1 upregulation was functionally coupled to increased migration since the selective depletion of SK-1, but not of SK-2, by siRNAs abolished the migratory response. In summary, these data show that hypoxia upregulates SK-1 activity and results in an accelerated migratory capacity of endothelial cells. SK-1 may thus serve as an attractive therapeutic target to treat diseases associated with increased endothelial migration and angiogenesis such as cancer growth and progression.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vascular endothelial growth factor (VEGF)-A and the VEGF receptors are critical for regulating angiogenesis during development and homeostasis and in pathological conditions, such as cancer and proliferative retinopathies. Most effects of VEGF-A are mediated by the VEGFR2 and its coreceptor, neuropilin (NRP)-1. Here, we show that VEGFR2 is shed from cells by the metalloprotease disintegrin ADAM17, whereas NRP-1 is released by ADAM10. VEGF-A enhances VEGFR2 shedding by ADAM17 but not shedding of NRP-1 by ADAM10. VEGF-A activates ADAM17 via the extracellular signal-regulated kinase (ERK) and mitogen-activated protein kinase pathways, thereby also triggering shedding of other ADAM17 substrates, including tumor necrosis factor alpha, transforming growth factor alpha, heparin-binding epidermal growth factor-like growth factor, and Tie-2. Interestingly, an ADAM17-selective inhibitor shortens the duration of VEGF-A-stimulated ERK phosphorylation in human umbilical vein endothelial cells, providing evidence for an ADAM17-dependent crosstalk between the VEGFR2 and ERK signaling. Targeting the sheddases of VEGFR2 or NRP-1 might offer new opportunities to modulate VEGF-A signaling, an already-established target for treatment of pathological neovascularization.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The signals and molecular mechanisms that regulate the replication of terminally differentiated beta cells are unknown. Here, we report the identification and characterization of transmembrane protein 27 (Tmem27, collectrin) in pancreatic beta cells. Expression of Tmem27 is reduced in Tcf1(-/-) mice and is increased in islets of mouse models with hypertrophy of the endocrine pancreas. Tmem27 forms dimers and its extracellular domain is glycosylated, cleaved and shed from the plasma membrane of beta cells. This cleavage process is beta cell specific and does not occur in other cell types. Overexpression of full-length Tmem27, but not the truncated or soluble protein, leads to increased thymidine incorporation, whereas silencing of Tmem27 using RNAi results in a reduction of cell replication. Furthermore, transgenic mice with increased expression of Tmem27 in pancreatic beta cells exhibit increased beta cell mass. Our results identify a pancreatic beta cell transmembrane protein that regulates cell growth of pancreatic islets.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transforming growth factor-beta2 (TGF-beta2) stimulates the expression of pro-fibrotic connective tissue growth factor (CTGF) during the course of renal disease. Because sphingosine kinase-1 (SK-1) activity is also upregulated by TGF-beta, we studied its effect on CTGF expression and on the development of renal fibrosis. When TGF-beta2 was added to an immortalized human podocyte cell line we found that it activated the promoter of SK-1, resulting in upregulation of its mRNA and protein expression. Further, depletion of SK-1 by small interfering RNA or its pharmacological inhibition led to accelerated CTGF expression in the podocytes. Over-expression of SK-1 reduced CTGF induction, an effect mediated by intracellular sphingosine-1-phosphate. In vivo, SK-1 expression was also increased in the podocytes of kidney sections of patients with diabetic nephropathy when compared to normal sections of kidney obtained from patients with renal cancer. Similarly, in a mouse model of streptozotocin-induced diabetic nephropathy, SK-1 and CTGF were upregulated in podocytes. In SK-1 deficient mice, exacerbation of disease was detected by increased albuminuria and CTGF expression when compared to wild-type mice. Thus, SK-1 activity has a protective role in the fibrotic process and its deletion or inhibition aggravates fibrotic disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dyslipidaemia is often associated with adult growth hormone (GH) deficiency. Reduced removal of very-low-density lipoprotein (VLDL) apolipoprotein B-100 (apo B-100) can, in part, explain the "unfavourable" lipid profile of these patients. By modifying VLDL composition and through its action on low-density lipoprotein (LDL) receptors, GH may improve the lipid profile by increasing direct hepatic uptake of VLDL apo B-100, thereby decreasing conversion to LDL. Although GH stimulates VLDL apo B-100 secretion, this is exceeded by its effects in upregulating LDL receptors and modifying VLDL composition. We hypothesize that the improved lipid profile, in particular the decrease in cholesterol-rich VLDL particles, may contribute to a possible antiatherogenic action of GH. GH appears to have an important role in hepatic apo B-100 metabolism. However, we are just at the beginning of understanding the underlying mechanism. Further studies are required to investigate the effect of GH on other lipoprotein classes, in particular VLDL subfractions, intermediate-density lipoprotein, LDL and high-density lipoprotein. The key question, however, remains as to whether GH replacement therapy can reduce cardiovascular mortality. Long-term studies with sufficient numbers of patients are required to answer this question.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Patients with adult GH deficiency are often dyslipidemic and may have an increased risk of cardiovascular disease. The secretion and clearance of very low density lipoprotein apolipoprotein B 100 (VLDL apoB) are important determinants of plasma lipid concentrations. This study examined the effect of GH replacement therapy on VLDL apoB metabolism using a stable isotope turnover technique. VLDL apoB kinetics were determined in 14 adult patients with GH deficiency before and after 3 months GH or placebo treatment in a randomized double blind, placebo-controlled study using a primed constant [1-(13)C]leucine infusion. VLDL apoB enrichment was determined by gas chromatography-mass spectrometry. GH replacement therapy increased plasma insulin-like growth factor I concentrations 2.9 +/- 0.5-fold (P < 0.001), fasting insulin concentrations 1.8 +/- 0.6-fold (P < 0.04), and hemoglobin A1C from 5.0 +/- 0.2% to 5.3 +/- 0.2% (mean +/- SEM; P < 0.001). It decreased fat mass by 3.4 +/- 1.3 kg (P < 0.05) and increased lean body mass by 3.5 +/- 0.8 kg (P < 0.01). The total cholesterol concentration (P < 0.02), the low density lipoprotein cholesterol concentration (P < 0.02), and the VLDL cholesterol/VLDL apoB ratio (P < 0.005) decreased. GH therapy did not significantly change the VLDL apoB pool size, but increased the VLDL apoB secretion rate from 9.2 +/- 2.0 to 25.9 +/- 10.3 mg/kg x day (P < 0.01) and the MCR from 11.5 +/- 2.7 to 20.3 +/- 3.2 mL/min (P < 0.03). No significant changes were observed in the placebo group. This study suggests that GH replacement therapy improves lipid profile by increasing the removal of VLDL apoB. Although GH therapy stimulates VLDL apoB secretion, this is offset by the increase in the VLDL apoB clearance rate, which we postulate is due to its effects in up-regulating low density lipoprotein receptors and modifying VLDL composition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Total body water (TBW) is reduced in adult GH deficiency (GHD) largely due to a reduction of extracellular water. It is unknown whether total blood volume (TBV) contributes to the reduced extracellular water in GHD. GH and insulin-like growth factor I (IGF-I) have been demonstrated to stimulate erythropoiesis in vitro, in animal models, and in growing children. Whether GH has a regulatory effect on red cell mass (RCM) in adults is not known. We analyzed body composition by bioelectrical impedance and used standard radionuclide dilution methods to measure RCM and plasma volume (PV) along with measuring full blood count, ferritin, vitamin B12, red cell folate, IGF-I, IGF-binding protein-3, and erythropoietin in 13 adult patients with GHD as part of a 3-month, double blind, placebo-controlled trial of GH (0.036 U/kg.day). TBW and lean body mass significantly increased by 2.5 +/- 0.53 kg (mean +/- SEM; P < 0.004) and 3.4 +/- 0.73 kg (P < 0.004), respectively, and fat mass significantly decreased by 2.4 +/- 0.32 kg (P < 0.001) in the GH-treated group. The baseline RCM of all patients with GHD was lower than the predicted normal values (1635 +/- 108 vs. 1850 +/- 104 mL; P < 0.002). GH significantly increased RCM, PV, and TBV by 183 +/- 43 (P < 0.006), 350 +/- 117 (P < 0.03), and 515 +/- 109 (P < 0.004) mL, respectively. The red cell count increased by 0.36 +/- 0.116 x 10(12)/L (P < 0.03) with a decrease in ferritin levels by 39.1 +/- 4.84 micrograms/L (P < 0.001) after GH treatment. Serum IGF-I and IGF-binding protein-3 concentrations increased by 3.0 +/- 0.43 (P < 0.001) and 1.3 +/- 0.15 (P < 0.001) SD, respectively, but the erythropoietin concentration was unchanged after GH treatment. No significant changes in body composition or blood volume were recorded in the placebo group. Significant positive correlations could be established between changes in TBW and TBV, lean body mass and TBV (r = 0.78; P < 0.04 and r = 0.77; P < 0.04, respectively), and a significant negative correlation existed between changes in fat mass and changes in TBV in the GH-treated group (r = -0.95; P < 0.02). We conclude that 1) erythropoiesis is impaired in GHD; 2) GH stimulates erythropoiesis in adult GHD; and 3) GH increases PV and TBV, which may contribute to the increased exercise performance seen in these patients.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aldosterone is an important factor supporting placental growth and fetal development. Recently, expression of placental growth factor (PlGF) has been observed in response to aldosterone exposure in different models of atherosclerosis. Thus, we hypothesized that aldosterone up-regulates growth-adaptive angiogenesis in pregnancy, via increased placental PlGF expression. We followed normotensive pregnant women (n = 24) throughout pregnancy and confirmed these results in a second independent first trimester cohort (n = 36). Urinary tetrahydroaldosterone was measured by gas chromatography-mass spectrometry and corrected for creatinine. Circulating PlGF concentrations were determined by ELISA. Additionally, cultured cell lines, adrenocortical H295R and choriocarcinoma BeWo cells, as well as primary human third trimester trophoblasts were tested in vitro. PlGF serum concentrations positively correlated with urinary tetrahydroaldosterone corrected for creatinine in these two independent cohorts. This observation was not due to PlGF, which did not induce aldosterone production in cultured H295R cells. On the other hand, PlGF expression was specifically enhanced by aldosterone in the presence of forskolin (p < 0.01) in trophoblasts. A pronounced stimulation of PlGF expression was observed with reduced glucose concentrations simulating starvation (p < 0.001). In conclusion, aldosterone stimulates placental PlGF production, enhancing its availability during human pregnancy, a response amplified by reduced glucose supply. Given the crucial role of PlGF in maintaining a healthy pregnancy, these data support a key role of aldosterone for a healthy pregnancy outcome.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND The metacestode of the tapeworm Echinococcus multilocularis is the causative agent of alveolar echinococcosis, a lethal zoonosis. Infections are initiated through establishment of parasite larvae within the intermediate host's liver, where high concentrations of insulin are present, followed by tumour-like growth of the metacestode in host organs. The molecular mechanisms determining the organ tropism of E. multilocularis or the influences of host hormones on parasite proliferation are poorly understood. RESULTS Using in vitro cultivation systems for parasite larvae we show that physiological concentrations (10 nM) of human insulin significantly stimulate the formation of metacestode larvae from parasite stem cells and promote asexual growth of the metacestode. Addition of human insulin to parasite larvae led to increased glucose uptake and enhanced phosphorylation of Echinococcus insulin signalling components, including an insulin receptor-like kinase, EmIR1, for which we demonstrate predominant expression in the parasite's glycogen storage cells. We also characterized a second insulin receptor family member, EmIR2, and demonstrated interaction of its ligand binding domain with human insulin in the yeast two-hybrid system. Addition of an insulin receptor inhibitor resulted in metacestode killing, prevented metacestode development from parasite stem cells, and impaired the activation of insulin signalling pathways through host insulin. CONCLUSIONS Our data indicate that host insulin acts as a stimulant for parasite development within the host liver and that E. multilocularis senses the host hormone through an evolutionarily conserved insulin signalling pathway. Hormonal host-parasite cross-communication, facilitated by the relatively close phylogenetic relationship between E. multilocularis and its mammalian hosts, thus appears to be important in the pathology of alveolar echinococcosis. This contributes to a closer understanding of organ tropism and parasite persistence in larval cestode infections. Furthermore, our data show that Echinococcus insulin signalling pathways are promising targets for the development of novel drugs.