2 resultados para Stieltjes, Integrais de

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Static hedging of complicated payoff structures by standard instruments becomes increasingly popular in finance. The classical approach is developed for quite regular functions, while for less regular cases, generalized functions and approximation arguments are used. In this note, we discuss the regularity conditions in the classical decomposition formula due to P. Carr and D. Madan (in Jarrow ed, Volatility, pp. 417–427, Risk Publ., London, 1998) if the integrals in this formula are interpreted as Lebesgue integrals with respect to the Lebesgue measure. Furthermore, we show that if we replace these integrals by Lebesgue–Stieltjes integrals, the family of representable functions can be extended considerably with a direct approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We solve two inverse spectral problems for star graphs of Stieltjes strings with Dirichlet and Neumann boundary conditions, respectively, at a selected vertex called root. The root is either the central vertex or, in the more challenging problem, a pendant vertex of the star graph. At all other pendant vertices Dirichlet conditions are imposed; at the central vertex, at which a mass may be placed, continuity and Kirchhoff conditions are assumed. We derive conditions on two sets of real numbers to be the spectra of the above Dirichlet and Neumann problems. Our solution for the inverse problems is constructive: we establish algorithms to recover the mass distribution on the star graph (i.e. the point masses and lengths of subintervals between them) from these two spectra and from the lengths of the separate strings. If the root is a pendant vertex, the two spectra uniquely determine the parameters on the main string (i.e. the string incident to the root) if the length of the main string is known. The mass distribution on the other edges need not be unique; the reason for this is the non-uniqueness caused by the non-strict interlacing of the given data in the case when the root is the central vertex. Finally, we relate of our results to tree-patterned matrix inverse problems.